DOI QR코드

DOI QR Code

Dynamic characteristics analysis of CBGSCC bridge with large parameter samples

  • Zhongying He (Department of Civil Engineering and Architecture, Henan University) ;
  • Yifan Song (Department of Civil Engineering and Architecture, Henan University) ;
  • Genhui Wang (Department of Civil Engineering, Lanzhou Jiaotong University) ;
  • Penghui Sun (Department of Civil Engineering and Architecture, Henan University)
  • 투고 : 2023.04.16
  • 심사 : 2024.07.16
  • 발행 : 2024.07.25

초록

In order to make the dynamic analysis and design of improved composite beam with corrugated steel web (CBGSCC) bridge more efficient and economical, the parametric self-cyclic analysis model (SCAM) was written in Python on Anaconda platform. The SCAM can call ABAQUS finite element software to realize automatic modeling and dynamic analysis. For the CBGSCC bridge, parameters were set according to the general value range of CBGSCC bridge parameters in actual engineering, the SCAM was used to calculate the large sample model generated by parameter coupling, the optimal value range of each parameter was determined, and the sensitivity of the parameters was analyzed. The number of diaphragms effects weakly on the dynamic characteristics. The deck thickness has the greatest influence on frequency, which decreases as the deck thickness increases, and the deck thickness should be 20-25 cm. The vibration frequency increases with the increase of the bottom plate thickness, the web thickness, and the web height, the bottom plate thickness should be 17-23mm, the web thickness should be 13-17 mm, and the web height should be 1.65-1.7 5 m. Web inclination and Skew Angle should not exceed 30°, and the number of diaphragms should be 3-5 pieces. This method can be used as a new method for structural dynamic analysis, and the importance degree and optimal value range of each parameter of CBGSCC bridge can be used as a reference in the design process.

키워드

과제정보

The research described in this paper was financially supported by the Gansu Province Department of Transportation (No. 19ZD2GA002), the Henan Province Department of Transportation (No. 182300410150 and 162102210173). The authors gratefully acknowledge the support.

참고문헌

  1. Aggarwal, K., Wu, S. and Papangelis, J. (2018), "Finite element analysis of local shear buckling in corrugated web beams", Eng. Struct., 162, 37-50. https://doi.org/10.1016/j.engstruct.2018.01.016.
  2. Bagherinejad, M.H. and Haghollahi, A. (2018), "Topology optimization of steel plate shear walls in the moment frames", Steel Compos. Struct., 29(6), 771-783. https://doi.org/10.12989/scs.2018.29.6.767.
  3. Cao, L., Liu, J.P. and Chen, Y.F. (2018), "Theoretical and numerical study on the natural frequencies of bridges with corrugated steel webs", Structures., 15, 224-231. https://doi.org/10.1016/j.istruc.2018.07.005.
  4. Chan, C.L., Khalid, Y.A., Sahari, B.B. and Hamouda, A.M.S. (2002), "Finite element analysis of corrugated web beams under bending", J. Construct. Steel Res.., 58, 1391-1406. https://doi.org/10.1016/S0143-974X(01)00075-X.
  5. Elgaaly, M., Seshadri, A. and Hamilton, R.W. (1997), "Bending strength of steel beams with corrugated webs", J. Struct. Eng., 123(6), 772-782. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(772).
  6. Feng, Y.L., Jiang, L.Z. and Zhou, W.B. (2020), "Improved analytical method to investigate the dynamic characteristics of composite box beam with corrugated webs", Int. J. Steel Struct.., 20(1), 194-206. https://doi.org/10.1007/s13296-019-00278-4.
  7. Hu, W.H., Caetano, E. and Cunha, A . (2013), "Structural health monitoring of a stress-ribbon footbridge", Eng. Struct., 578-593. https://doi.org/10.1016/j.engstruct.2012.06.051.
  8. Huang, H.M., Zhang, Y.H., Ji, W. and Luo, K. (2022), "Theoretical study and parametric analysis on restrained torsion of composite box girder bridge with corrugated steel webs", J. Bridge Eng., 27(12). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001963.
  9. Ji, W., Luo, K., Ma, W.L. and Wang, M.H. (2020), "Parametric analysis of pure bending vertical vibration frequency of combined simply supported box girder with corrugated steel web-steel bottom-concrete roof", J. Vib.Eng., 33(05), 1053-1061. https://doi.org/10.16385/j.cnki.issn.1004-4523.2020.05.020.
  10. Ji, W., Luo, K., Ma, W.L., Tang, S.Y. and Xi, P.P. (2020), "Analysis and experimental study on the dynamic characteristics of assembled waveform web steel box-concrete composite girder bridge", Vib. Shock., 39(20), 1-7+16. https://doi.org/10.13465/j.cnki.jvs.2020.20.001.
  11. Ji, W., Zhang, J.W. and Luo, K. (2020), "Analysis of dynamic characteristics of composite box girder bridges with corrugated steel webs based on the equivalence principle", Appl. Mathem. Mech.., 41(07), 725-734. https://doi.org/10.1007/s10483-020-2611-5
  12. Jiho M., Ko, H.J., Sung I.H. and Lee H.E. (2015), "Natural frequency of a composite girder with corrugated steel web", Steel Compos. Struct., 18(1). https://doi.org/10.12989/SCS.2015.18.1.255.
  13. JTG D60-2015 (2015), General Specification for Highway Bridge and Culvert Design, China Communication Press Co., Ltd; Beijing, China.
  14. Kong, X., Luo, K., Ji, W., Yu, Q.Y. and Deng, L. (2022), "Study on dynamic characteristics of an improved composite box girder with corrugated steel webs", J. Bridge Eng., 27(6), 04022035. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001877.
  15. Li, H.J., Ye, J.S. and Wan, S. (2004), "Study on transverse spacer spacing of Corrugated Steel web box girder", J. Highway Transport. Sci. Technol., 10, 51-54+61.
  16. Li, S.Q., Chen J.B. and Wan, S. (2009), "Design and construction of PC composite box girder bridges with corrugated steel webs in China", Eng. Mech., 26(S1), 115-118.
  17. Li, S.Y., Li, H.W., Wang, W.D. and Hou, C. (2018), "A fiber model based on secondary development of ABAQUS for elastic-plastic analysis", Int. J. Steel Struct., 18, 1560-1576. https://doi.org/10.1007/s13296-018-0053-7.
  18. Li, Y.S., Dai, Q.N. and Liu, C.X. (2021), "Experimental research on free vibration of curved composite box-girders with corrugated steel webs", Steel Compos. Struct., 41(1), 137-147. https://doi.org/10.12989/scs.2021.41.1.137.
  19. Lindner, J. (1990), "Lateral torsional buckling of beams with trapezoidally corrugated webs", The Fourth International Colloquium on Stability of Steel Structures, Proceedings, Budapest, Hungary., 2, 305-308.
  20. Liu, S.M., De, C.W. and Ding, H.S. (2021), "Mechanical properties of curved composite box girders with corrugated steel webs", Steel Compos. Struct., 41(1), 65-84. https://doi.org/10.12989/scs.2021.41.1.065.
  21. Luo, K. (2020), "Research on the dynamic characteristics of steel box-concrete composite girder bridges with corrugated webs", Lanzhou Jiaotong University. https://doi.org/10.27205/d.cnki.gltec.2020.001074.
  22. Luo, R. and Edlund, B. (1996), "Shear capacity of plate girders with trapezoidally corrugated webs", Thin-Wall. Struct., 26(01), 19-44. https://doi.org/10.1016/0263-8231(96)00006-7.
  23. Luo, R. and Edlund, B. (1996), "Ultimate strength of girders with trapezoidally corrugated webs under patch loading", Thin-Wall. Struct., 24(04), 135-156. https://doi.org/10.1016/0263-8231(95)00029-1.
  24. Ma, C., Liu, S.Z., Chen, Q., Jia, T. and Zhang, R.J. (2019), "Dynamic characteristics analysis of improved waveform steel web combined box girder", J. Railway Eng., 36(11), 30-37+44.
  25. Mansouri, I., Arabzadeh, A., Farzampour, A. and Hu, J.W. (2020), "Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls", Steel Compos. Struct., 37(1), 91-98. https://doi.org/10.12989/scs.2020.37.1.091.
  26. Moon, J.H., Ko, H.J., Sung, I.H. and Lee, H.E. (2015), "Natural frequency of a composite girder with corrugated steel web", Steel Compos. Struct., 18(1), 255-271. https://doi.org/10.12989/scs.2015.18.1.255.
  27. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavania, S. and Salih, MNA. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.
  28. Si, C.D., Su, X., Chen, E.L. and Yan, Z.Y. (2019), "Comparative study on dynamic response of deck pavement of two kinds of box girder bridges under moving loads", Shock Vib., 1-13. https://doi.org/10.1155/2019/6052745.
  29. Su, Q., Zhang, C., Zhao, W.Z. and Wan, S. (2019), "Parametric analysis of seismic response of PC continuous beam bridge with corrugated steel webs", AIP Conference Proceedings., 2073(1). https://doi.org/10.1063/1.5090659.
  30. Wu, D.J., Mei, Z.Y., Zhu, Y. and Hu, H.Z. (2023), "Development of an ABAQUSTM plug-in for predicting composite plates stiffness with in-plane periodicity", SoftwareX., https://doi.org/10.1016/J.SOFTX. 2022.101281.
  31. Wu, J. and Huang, X.C. (2020), "Parametric Modeling of CFRP steel tube concrete based on abaqus secondary development", J. Progress Civil Eng., 2(7).
  32. Xiang, P. and Liew, K.M. (2012), "Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model", Comput. Meth. Appl. Mech. Eng., 123-132. https://doi.org/10.1016/j.cma.2012.02.023.
  33. Xiang, P., Ma, H., Zhao, H., Jiang, L., Xu, S. and Liu, X. (2023), "Safety analysis of train-track-bridge coupled braking system under earthquake", Structures, 1519-1529. https://doi.org/10.1016/j.istruc.2023.04.086.
  34. Xiang, P., Wei, M.L., Sun, M.M., Li, Q.S., Jiang, L.Z., Liu, X. and Ren, J.Y. (2021), "Creep effect on the dynamic response of train-track-continuous bridge system", Int. J. Struct. Stab. Dyn., 10. https://doi.org/10.1142/S021945542150139X.
  35. Xie, R.M. and Wang, X.J. (2017), "Secondary development and application of ABAQUS based on Python", China Water Transport (Second Half Month)., 17(10), 77-79.
  36. Xu, Q., Zhang, N., Zhao, A. and Song, J.Y. (2018), "Nonlinear finite element analysis of corrugated steel web composite beam based on ABAQUS", IOP Conference Series: Earth and Environmental Science., 189(2), 022083. https://doi.org/10.1088/1755-1315/189/2/022083.
  37. Yan, Z.M., Tang, M.J., Chen, G. and Zhuang, Z. (2019), "Development of analogy method for thermal-fatigue crack propagation in pressurized cylinder by using permeation diffusion-fracture model", Eng. Fracture Mech.(C). https://doi.org/10.1016/j.engfracmech.2019.106710.
  38. Yang, T.Y., Shi, D.Q. and Cheng, Z. (2018), "2D geometrical parameters optimization design method of CMC/metal dovetail joint", Mater. Sci. Forum., 4558, 156-163. https://doi.org/10.4028/www.scientific.net/MSF.923.156.
  39. Yang, Z.J., Yao, F. and Huang, Y.J. (2020), "Development of ABAQUS UEL/VUEL subroutines for scaled boundary finite element method for general static and dynamic stress analyses", Eng. Anal. Bound. Elements(C). https://doi.org/10.1016/j.enganabound.2020.02.004.
  40. Zang, X.M., Wang, G.H. and Zhang, Z.C. (2021), "Analysis and study on bending vibration frequency of new corrugated steel web composite box girder", Adv. Civil Eng., https://doi.org/10.1155/2021/3091480.
  41. Zhang, X.P., Li, W., Tang, S.H., Cui, H.T. and Xie, X.N. (2023), "Investigations on the shearing performance of ballastless CRTS II slab based on quasi-distributed optical fiber sensing", Optical Fiber Technol., 75. https://doi.org/10.1016/j.yofte.2022.103129.
  42. Zhang, Y., Liu, Y.Q., Wang, S.H., Chen, Y.Y., He, X.H. and Zhang, Y. (2022), "Concrete additional stress near intermediate support for composite girder bridges with corrugated steel webs", J. Bridge Eng., 3. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001817.
  43. Zhang, Y.Q., Miyamori, Y., Kadota, T, and Saito, T. (2023), "Long-term investigations of dynamic behavior of a pre-stressed concrete ballasted railway bridge", Structures, 822-832. https://doi.org/10.1016/j.istruc.2023.04.118.
  44. Zhang, Z., Zou, P., Deng, E.F., Ye, Z., Tang, Y. and Li, F.R. (2023), "Experimental study on prefabricated composite box girder bridge with corrugated steel webs", J. Construct. Steel Res., 201. https://doi.org/10.1016/J.JCSR.2022.107753.
  45. Zhao, H., Wei, B., Guo P.D., Tan, J.C. and Xiang, P. (2023), "Random analysis of train-bridge coupled system under non-uniform ground motion", Adv. Struct. Eng., 10, 1847-1865. https://doi.org/10.1177/13694332231175230.
  46. Zhao, H., Wei, B., Jiang, L.Z. and Xiang, P. (2022), "Seismic running safety assessment for stochastic vibration of train-bridge coupled system", Arch. Civil Mech. Eng., 4. https://doi.org/10.1007/s43452-022-00451-3
  47. Zhao, H., Wei, B., Jiang, L.Z. and Xiang, P. (2023), "A velocity-related running safety assessment index in seismic design for railway bridge", Mech. Syst. Signal Processing. https://doi.org/10.1016/j.ymssp.2023.110305.
  48. Zhou, M.D., Zhang, Y.H., Lin, P.Z., Ji, W. and Huang H.M. (2023), "Study of practical analysis method for shear warping deformation of composite box girder with corrugated steel webs", Materials., 16(5). https://doi.org/10.3390/MA16051845.