DOI QR코드

DOI QR Code

Evaluation of Pb (II) and Cd (II) biosorption from aqueous solution by Ziziphus lotus stem powder (ZLSP)

  • Nosair El Yakoubi (Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University) ;
  • Mounia Ennami (Agronomic and Veterinary Institute Hassan II (IAV), Production, Protection and Plant Biotechnology Department) ;
  • Naouar Ben Ali (Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University) ;
  • Zineb Nejjar El Ansari (Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University) ;
  • Mohammed L'bachir EL KBIACH (Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University) ;
  • Loubna Bounab (Advanced Materials, Structures and Civil Engineering Team, ENSA Tetouan, Abdelmalek Essaadi University) ;
  • Brahim El Bouzdoudi (Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University)
  • Received : 2023.12.14
  • Accepted : 2024.07.09
  • Published : 2024.04.25

Abstract

The ability of Zizyphus lotus stem powder (ZLSP) to remove Pb (II) and Cd (II) ions from an aqueous solution was evaluated. The present phenomenon of biosorption was revealed to depend on pH, biosorbent dosage, temperature, initial ionic concentration, time of contact and biosorbent's particle size. The sorption process was exothermic (∆H°<0), and showing a strong Pb(II)/Cd(II)-ZLSP affinity (∆S°>0). Gibbs free energy data (∆G°<0, and decreases as temperature increase) reveals that the process studied is characterized by its feasibility and spontaneous nature. The best fits of the equilibrium data were obtained by the Temkin model and the Langmuir model. The maximum Pb(II)/Cd(II)-ZLSP biosorption capacities were 33.02 mg/g for Pb (II) and 20.73 mg/g for Cd (II). The pseudo-second order model was the most appropriate for fitting the kinetic data. The characterization of the biochemical groups essentially involved in the sorption phenomenon was made possible by FTIR spectral analysis. The capacity of ZLSP as an effective and ecofriendly biosorbent is confirmed through this study.

Keywords

Acknowledgement

The authors would like to thank the Ministry of International Cooperation for securing funds to initiate and support the Hollow Fibre Membranes Program at the National Research Centre from the Islamic Development Bank and Kuwait fund for Arab Economic Development.

References

  1. Abcha, I., Ben Haj Said, L., Salmieri, S., Criado, P., Neffati, M. and Lacroix, M. (2021), "Optimization of extraction parameters, characterization and assessment of bioactive properties of Ziziphus lotus fruit pulp for nutraceutical potential", Eur. Food Res. Technol., 247(9), 2193-2209. https://doi.org/10.1007/s00217-021-03779-x.
  2. Abdul Maulud, K.N., Fitri, A., Wan Mohtar, W.H.M., Wan Mohd Jaafar, W.S., Zuhairi, N.Z. and Kamarudin, M.K.A. (2021), "A study of spatial and water quality index during dry and rainy seasons at Kelantan River Basin, Peninsular Malaysia", Arab. J. Geosci., 14, 1-19. https://doi.org/10.1007/s12517-020-06382-8.
  3. Akpomie, K.G. and Jeanet, C. (2020), "Banana peel as a biosorbent for the decontamination of water pollutants: A Review", Environ. Chem. Lett., 18(4), 1085-1112. https://doi.org/10.1007/s10311-020-00995-x.
  4. Ampiaw, R.E., Yaqub, M. and Lee, W. (2019), "Adsorption of microcystin onto activated carbon: A review", Membr. Water Treat., 10(6), 405-415. https://doi.org/10.12989/mwt.2019.10.6.405
  5. Anayurt, R.A., Sari, A. and Tuzen, M. (2009), "Equilibrium, thermodynamic and kinetic studies on biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass", Chem. Eng. J., 151(1-3), 255-261. https://doi.org/10.1016/j.cej.2009.03.002.
  6. Anwar, J., Shafique, U., Salman, M., Dar, A. and Anwar, S. (2010), "Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana", Bioresour. Technol., 101(6), 1752-1755. https://doi.org/10.1016/j.biortech.2009.10.021.
  7. Arola, K., Van der Bruggen, B., Manttari, M. and Kallioinen, M. (2019), "Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review", Critical Rev. Environ. Sci. Technol., 49(22), 2049-2116. https://doi.org/10.1080/10643389.2019.1594519.
  8. Begum, S., Yuhana, N.Y., Saleh, N.M., Kamarudin, N.H.N. and Sulong, A.B. (2021), "Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties", Carbohydrate. Polym., 259, 117613. https://doi.org/10.1016/j.carbpol.2021.117613.
  9. Beni, A.A. and Esmaeili, A. (2020), "Biosorption, an efficient method for removing heavy metals from industrial effluents: a review", Environ. Technol. Innov., 17, 100503. https://doi.org/10.1016/j.eti.2019.100503.
  10. Berkani, F., Dahmoune, F., Kadri, N., Serralheiro, M.L., Ressaissi, A., Abbou, A. and Mouni, L. (2022), "LC-ESI-MS/MS analysis, biological effects of phenolic compounds extracted by microwave method from Algerian Zizyphus lotus fruits", J. Food Measure. Character., 16(5), 3354-3371. https://doi.org/10.1007/s11694-022-01437-8.
  11. Bhattacharjee, C., Dutta, S. and Saxena, V.K. (2020), "A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent", Environ. Adv., 2, 100007. https://doi.org/10.1016/j.envadv.2020.100007.
  12. Boloy, R.A.M., da Cunha Reis, A., Rios, E.M., de Araujo Santos Martins, J., Soares, L.O., de Sa Machado, V.A. and de Moraes, D.R. (2021), "Waste-to-energy technologies towards circular economy: A systematic literature review and bibliometric analysis", Water Air Soil Pollut., 232(7), 306. https://doi.org/10.1007/s11270-021-05224-x.
  13. Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari, M. and Sadaoui, Z. (2019), "Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones", Microchem. J., 146, 1010-1018. https://doi.org/10.1016/j.microc.2019.02.010.
  14. Butnariu, M. (2022), "Heavy metals as pollutants in the aquatic Black Sea ecosystem", In Bacterial Fish Diseases, 3, 31-57. https://doi.org/10.1016/B978-0-323-85624-9.00003-8.
  15. Chen, Y., Wang, H., Zhao, W. and Huang, S. (2018), "Four different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: Kinetics, isotherm and mechanism", J. Taiwan Inst. Chem. Eng., 88, 146-151. https://doi.org/10.1016/j.jtice.2018.03.046.
  16. Cheng, S., Liu, Y., Xing, B., Qin, X., Zhang, C. and Xia, H. (2021), "Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust", J. Clean. Prod., 314, 128074. https://doi.org/10.1016/j.jclepro.2021.128074.
  17. Chirinos-Peinado, D.M. and Castro-Bedrinana, J.I. (2020), "Lead and cadmium blood levels and transfer to milk in cattle reared in a mining area", Heliyon, 6(3). https://doi.org/10.1016/j.heliyon.2020.e03579.
  18. Cima-Mukul, C.A., Abdellaoui, Y., Abatal, M., Vargas, J., Santiago, A.A. and Barron-Zambrano, J.A. (2019), "Eco-efficient bio-sorbent based on leucaena leucocephala residues for the simultaneous removal of Pb (II) and Cd (II) ions from water system: Sorption and mechanism", Bioinorgan. Chem. Appl., 2019(13). https://doi.org/10.1155/2019/2814047.
  19. De Gisi, S., Lofrano, G., Grassi, M. and Notarnicola, M. (2016), "Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review", Sustain. Mater. Technol., 9, 10-40. https://doi.org/10.1016/j.susmat.2016.06.002.
  20. Dehghani-Sanij, A.R., Tharumalingam, E., Dusseault, M.B. and Fraser, R. (2019), "Study of energy storage systems and environmental challenges of batteries", Renew. Sustain. Energy Rev., 104, 192-208. https://doi.org/10.1016/j.rser.2019.01.023.
  21. Dias, M., Pinto, J., Henriques, B., Figueira, P., Fabre, E., Tavares, D. and Pereira, E. (2021), "Nutshells as efficient biosorbents to remove cadmium, lead, and mercury from contaminated solutions", Int. J. Environ. Res. Publ. Health, 18(4), 1580. https://doi.org/10.3390/ijerph18041580.
  22. El Maaiden, E., El Kharrassi, Y., Moustaid, K., Essamadi, A.K. and Nasser, B. (2019), "Comparative study of phytochemical profile between Ziziphus spina christi and Ziziphus lotus from Morocco", J. Food Measur. Character., 13(1), 121-130. https://doi.org/10.1007/s11694-018-9925-y.
  23. El Yakoubi, N., Ennami, M., El Ansari, Z. N., Lhaj, F., Bounab, L., El Kbiach, M. and El Bouzdoudi, B. (2023), "Utilization of Ziziphus lotus Fruit as a Potential Biosorbent for Lead (II) and Cadmium (II) Ion Removal from Aqueous Solution", Ecol. Eng. Environ. Technol., 24(3). https://doi.org/10.12912/27197050/159631.
  24. El Yakoubi, N., Ennami, M., El Ansari, Z.N., Lhaj, F., Bounab, L., El Kbiach, M. and El Bouzdoudi, B. (2023), "Removal of Cd(II) and Pb(II) from Aqueous Solution Using Ziziphus Lotus Leaves as a Potential Biosorbent", Desalin. Water Treat., 300, 65-74. https://doi.org/10.5004/dwt.2023.29726.
  25. Elahi, A., Arooj, I., Bukhari, D.A. and Rehman, A. (2020), "Successive use of microorganisms to remove chromium from wastewater", Appl. Microbiol. Biotechnol., 104, 3729-3743. https://doi.org/10.1007/s00253-020-10533-y.
  26. Elgarahy, A.M., Elwakeel, K.Z., Mohammad, S.H. and Elshoubaky, G.A. (2021), "A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process", Clean. Eng. Technol., 4, 100209. https://doi.org/10.1016/j.clet.2021.100209.
  27. Feisther, V.A., Scherer Filho, J., Hackbarth, F.V., Mayer, D.A., de Souza, A.A.U. and de Souza, S.M.G.U. (2019), "Raw leaves and leaf residues from the extraction of essential oils as biosorbents for metal removal", J. Environ. Chem. Eng., 7(3), 103047. https://doi.org/10.1016/j.jece.2019.103047.
  28. Ghoneim, M.M., El-Desoky, H.S., El-Moselhy, K.M., Amer, A., Abou El-Naga, E.H., Mohamedein, L.I. and Al-Prol, A.E. (2014), "Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca", Egyptian J. Aqua. Res. 40(3), 235-242. https://doi.org/10.1016/j.ejar.2014.08.005.
  29. Hammi, K.M., Essid, R., Khadraoui, N., Ksouri, R., Majdoub, H. and Tabbene, O. (2022), "Antimicrobial, antioxidant and antileishmanial activities of Ziziphus lotus leaves", Arch. Microbiol., 204(1), 119. https://doi.org/10.1007/s00203-021-02733-5.
  30. Jayakumar, V., Govindaradjane, S., Rajamohan, N. and Rajasimman, M. (2021), "Biosorption potential of brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc", Environ. Sci. Pollut. Res., 29, 41909-41922. https://doi.org/10.1007/s11356-021-15185-7.
  31. Jia, X., Hu, B., Marchant, B.P., Zhou, L., Shi, Z. and Zhu, Y. (2019), "A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China", Environ. Pollut., 250, 601-609. https://doi.org/10.1016/j.envpol.2019.04.047.
  32. Jorge, N., Santos, C., Teixeira, A.R., Marchao, L., Tavares, P.B., Lucas, M.S. and Peres, J.A. (2022), "Treatment of agro-industrial wastewaters by coagulation-flocculation-decantation and advanced oxidation processes-A literature review", Eng. Proc., 19(1), 33. https://doi.org/10.3390/ECP2022-12665.
  33. Khan, M.A., Khan, M.I. and Zafar, S. (2017), "Removal of different anionic dyes from aqueous solution by anion exchange membrane", Membr. Water Treat., 8(3), 259-277. https://doi.org/10.12989/mwt.2017.8.3.259.
  34. Kim, T.Y., Park, S.K., Cho, S.Y., Kim, H.B., Kang, Y., Kim, S.D. and Kim, S.J. (2005), "Adsorption of heavy metals by brewery biomass", Korean J. Chem. Eng., 22, 91-98. https://doi.org/10.1007/BF02701468.
  35. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M. and Bharagava, R.N. (2021), "Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety", J. Environ. Chem. Eng., 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012.
  36. Kumar, M., Singh, A.K. and Sikandar, M. (2018), "Study of sorption and desorption of Cd (II) from aqueous solution using isolated green algae Chlorella vulgaris", Appl. Water Sci. 8(8), 225. https://doi.org/10.1007/s13201-018-0871-y.
  37. Lazzari, E., Schena, T., Marcelo, M.C.A., Primaz, C.T., Silva, A. N., Ferrao, M.F. and Caramao, E.B. (2018), "Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis", Ind. Crops Prod., 111, 856-864. https://doi.org/10.1016/j.indcrop.2017.11.005.
  38. Liu, X., Tian, R., Ding, W., He, Y. and Li, H. (2019), "Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions", Adsorption, 25, 747-755. https://doi.org/10.1007/s10450-019-00081-x.
  39. Marmouzi, I., Kharbach, M., El Jemli, M., Bouyahya, A., Cherrah, Y., Bouklouze, A. and Faouzi, M.E.A. (2019), "Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus lotus leaves and fruits", Ind. Crops Prod., 132, 134-139. https://doi.org/10.1016/j.indcrop.2019.02.007.
  40. Medynska-Juraszek, A., A lvarez, M.L., Bialowiec, A. and Jerzykiewicz, M. (2021), "Characterization and sodium cations sorption capacity of chemically modified biochars produced from agricultural and forestry wastes", Materials, 14(16), 4714. https://doi.org/10.3390/ma14164714
  41. Murtaza, G., Shehzad, M.T., Kanwal, S., Farooqi, Z.U.R. and Owens, G. (2022), "Biomagnification of potentially toxic elements in animals consuming fodder irrigated with sewage water", Environ. Geochem. Health, 44(12), 4523-4538. https://doi.org/10.1007/s10653-022-01211-1.
  42. Murtaza, G., Shehzad, M.T., Kanwal, S., Farooqi, Z.U.R. and Owens, G. (2022), "Biomagnification of potentially toxic elements in animals consuming fodder irrigated with sewage water", Environ. Geochem. Health, 44(12), 4523-4538. https://doi.org/10.1016/j.toxrep.2020.12.012.
  43. Nharingo, T. and Moyo, M. (2016), "Application of opuntia ficus-indica in bioremediation of wastewaters: A critical review", J. Environ. Manage., 166, 55-72. https://doi.org/10.1016/j.jenvman.2015.10.005.
  44. Oyewole, O.A., Zobeashia, S.S.L.T., Oladoja, E.O., Raji, R.O., Odiniya, E.E. and Musa, A.M. (2019), "Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil", SN Appl. Sci., 1, 1-8. https://doi.org/10.1007/s42452-019-0879-4.
  45. Parashar, D. and Gandhimathi, R. (2022), "Zinc Ions adsorption from aqueous solution using raw and acid-modified orange peels: Kinetics, Isotherm, Thermodynamics, and Adsorption mechanism", Water Air Soil Pollut., 233(10), 400. https://doi.org/10.1007/s11270-022-05857-6.
  46. Thi Quyen, V., Pham, T.H., Kim, J., Thanh, D.M., Thang, P.Q., Van Le, Q. and Kim, T. (2021), "Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater", Chemosphere, 284, 131312. https://doi.org/10.1016/j.chemosphere.2021.131312.
  47. Rashid, R., Shafiq, I., Akhter, P., Iqbal, M.J. and Hussain, M. (2021), "A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method", Environ. Sci. Pollut. Res., 28, 9050-9066. https://doi.org/10.1007/s11356-021-12395-x.
  48. Rosinger, A.Y. and Brewis, A. (2019), "Life and death: Toward a human biology of water", Am. J. Human Biol., 32(1). https://doi.org/10.1007/s10668-018-00307-y.
  49. Sadeghi, H., Fazlzadeh, M., Zarei, A., Mahvi, A.H. and Nazmara, S. (2022), "Spatial distribution and contamination of heavy metals in surface water, groundwater and topsoil surrounding Moghan's tannery site in Ardabil, Iran", Int. J. Environ. Anal. Chem., 102(5), 1049-1059. https://doi.org/10.1080/03067319.2020.1730342.
  50. Sall, M.L., Diaw, A.K.D., Gningue-Sall, D., Efremova Aaron, S. and Aaron, J.J. (2020), "Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, A review", Environ. Sci. Pollut. Res., 27, 29927-29942. https://doi.org/10.1007/s11356-020-09354-3.
  51. Tariq, M., Anayat, A., Waseem, M., Rasool, M.H., Zahoor, M.A., Ali, S. and Alkahtani, S. (2020), "Physicochemical and bacteriological characterization of industrial wastewater being discharged to surface water bodies: Significant threat to environmental pollution and human health", J. Chem., 2020, 1-10. https://doi.org/10.1155/2020/9067436.
  52. Wang, G., Zhang, S., Yao, P., Chen, Y., Xu, X., Li, T. and Gong, G. (2018), "Removal of Pb (II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent", Arab. J. Chem., 11(1), 99-110. https://doi.org/10.1016/j.arabjc.2015.06.011.
  53. Wang, T., Zheng, J., Liu, H., Peng, Q., Zhou, H. and Zhang, X. (2021), "Adsorption characteristics and mechanisms of Pb 2+ and Cd 2+ by a new agricultural waste-Caragana korshinskii biomass derived biochar", Environ. Sci. Pollut. Res., 28, 13800-13818. https://doi.org/10.1007/s11356-020-11571-9.
  54. Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L. and Chen, Q. (2020), "The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application", Int. J. Environ. Res. Publ. Health, 17(15), 5359. https://doi.org/10.3390/ijerph17155359.
  55. White, L.M., Shibuya, T., Vance, S.D., Christensen, L.E., Bhartia, R., Kidd, R. and Russell, M.J. (2020), "Simulating serpentinization as it could apply to the emergence of life using the JPL hydrothermal reactor", Astrobiology, 20(3), 307-326. https://doi.org/10.1089/ast.2018.1949.
  56. Zhang, D., Hea, H., Li, W., Gao, T. and Ma, P. (2010), "Biosorption of cadmium (II) and lead (II) from aqueous solutions by fruiting body waste of fungus Flammulina velutipes", Desalin. Water Treat., 20(1-3), 160-167. https://doi.org/10.5004/dwt.2010.1467.
  57. Zhang, Y. and Duan, X. (2020), "Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate", Water Sci. Technol., 81(6), 1130-1136. https://doi.org/10.2166/wst.2020.208.