DOI QR코드

DOI QR Code

Enhanced nitrogen removal from high-strength ammonia containing wastewater using a membrane aerated bioreactor (MABR)

  • Arindam Sinharoy (Department of Environmental Science & Biotechnology, Jeonju University) ;
  • Ji-Hong Min (Department of Environmental Science & Biotechnology, Jeonju University) ;
  • Chong-Min Chung (Department of Environmental Science & Biotechnology, Jeonju University)
  • Received : 2024.04.12
  • Accepted : 2024.04.29
  • Published : 2024.04.25

Abstract

This study evaluated the performance of a membrane aerated biofilm reactor (MABR) for nitrogen removal from a high-strength ammonia nitrogen-containing wastewater. The experimental setup consisted of four compartments that are sequentially anaerobic and aerobic to achieve complete nitrogen removal. The last compartment of the reactor setup contained a membrane bioreactor (MBR) to reduce sludge production in the system and to obtain a better-quality effluent. Continuous experiment over a period of 47 days showed that MABR exhibited excellent NH4+-N removal efficiency (99.5%) compared to the control setup without MABR (56.5%). The final effluent NH4+-N concentration obtained in the MABR was 2.99±1.56 mg/L. In contrast to NH4+-N removal, comparable TOC removal values in the MABR and the control reactor (99.2% and 99.3%, respectively) showed that air supply through MABR is much more critical for denitrification than for organic removal. Further study to understand the effect of air supply rate and holding pressure on NH4+-N removal in MABR revealed that an increase in both these parameters positively impacted reactor performance. These parameters are related to oxygen supply to the biofilm formed over the membrane surface, which in turn influenced NH4+-N removal in MABR. Among the two different strategies to control biofilm over the membrane surface, results showed that scouring for a duration of 10 min on a weekly basis, along with mixing air supply, could be an effective method.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. 00219221)" Rural Development Administration, Republic of Korea.

References

  1. Abdelfattah, A., Eltawab, R., Hossain, M.I., Zhou, X. and Cheng, L. (2024), "Membrane aerated biofilm reactor system driven by pure oxygen for wastewater treatment", Bioresour. Technol., 393, 130130. https://doi.org/10.1016/j.biortech.2023.130130
  2. APHA, (2005), "Standard methods for the examination of water and wastewater", American Public Health Association/ American Water Works Association/Water Environment Federation: Washington, DC, U.S.A.
  3. Baskaran, V., Patil, P.K., Antony, M.L., Avunje, S., Nagaraju, V.T., Ghate, S.D., Nathamuni, S., Dineshkumar, N., Alavandi, S.V. and Vijayan, K.K. (2020), "Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackishwater ecosystems for mitigating nitrogen species", Sci. Rep., 10(1), 5201. https://doi.org/10.1038/s41598-020-62183-9
  4. Bunse, P., Orschler, L., Pidde, A.V. and Lackner, S. (2023), "Effects of scouring on membrane aerated biofilm reactor performance and microbial community composition", Bioresour. Technol., 369, 128441. https://doi.org/10.1016/j.biortech.2022.128441
  5. Chai, W.S., Chew, C.H., Munawaroh, H.S.H., Ashokkumar, V., Cheng, C.K., Park, Y.K. and Show, P.L. (2021), "Microalgae and ammonia: a review on inter-relationship", Fuel, 303, 121303. https://doi.org/10.1016/j.fuel.2021.121303
  6. Chamoli, A., Bhambri, A., Karn, S.K. and Raj, V. (2024), "Ammonia, nitrite transformations and their fixation by different biological and chemical agents", Chem. Ecol., 166-199. https://doi.org/10.1080/02757540.2023.2300780
  7. de Vries, W. (2021), "Impacts of nitrogen emissions on ecosystems and human health: A mini review", Curr. Opin. Environ. Sci. Health., 21, 100249. https://doi.org/10.1016/j.coesh.2021.100249
  8. Gilmore, K.R., Terada, A., Smets, B.F., Love, N.G. and Garland, J.L. (2013), "Autotrophic nitrogen removal in a membrane-aerated biofilm reactor under continuous aeration: A demonstration", Environ. Eng. Sci., 30(1), 38-45. https://doi.org/10.1089/ees.2012.0222
  9. Gu, B., Zhang, X., Lam, S.K., Yu, Y., Van Grinsven, H.J., Zhang, S., Wang, X., Bodirsky, B.L., Wang, S., Duan, J. and Chen, D. (2023), "Cost-effective mitigation of nitrogen pollution from global croplands", Nature, 613(7942), 77-84. https://doi.org/10.1038/s41586-022-05481-8
  10. He, H., Wagner, B.M., Carlson, A.L., Yang, C. and Daigger, G.T. (2021), "Recent progress using membrane aerated biofilm reactors for wastewater treatment", Water Sci. Technol., 84(9), 2131-2157. https://doi.org/10.2166/wst.2021.443
  11. Im, J. and Gil, K. (2023), "Characteristics of micro-plastics in stormwater sediment basin: Case study of J wetland", Membr. Water Treat., 14(4), 147. https://doi.org/10.12989/mwt.2023.14.4.147
  12. Lee, Y.J., Lee, J.I., Lee, C.G. and Park, S.J. (2023), "Thermally-activated Mactra veneriformis shells for phosphate removal in aqueous solution", Membr. Water Treat., 14(1), 1-10. https://doi.org/10.12989/mwt.2023.14.1.001
  13. Li, J., Feng, M., Zheng, S., Zhao, W., Xu, X. and Yu, X. (2023), "The membrane aerated biofilm reactor for nitrogen removal of wastewater treatment: Principles, performances, and nitrous oxide emissions", Chem. Eng. J., 460, 141693. https://doi.org/10.1016/j.cej.2023.141693
  14. Li, J., Wang, Z. and Wang, Y. (2023), "Integrating membrane aerated biofilm reactors with biological nitrogen removal processes: A new paradigm for achieving sustainable wastewater treatment plants", Chem. Eng. J., 475, 146025. https://doi.org/10.1016/j.cej.2023.146025
  15. Liu, S., Sinharoy, A., Lee, G.Y., Lee, M.J., Lee, B.C. and Chung, C.M. (2023), "Synergistic effects of ionizing radiation process in the integrated coagulation-sedimentation, Fenton oxidation, and biological process for treatment of leachate wastewater", Catalysts, 13(10), 1376. https://doi.org/10.3390/catal13101376
  16. Lu, D., Bai, H., Kong, F., Liss, S.N. and Liao, B. (2021), "Recent advances in membrane aerated biofilm reactors", Crit. Rev. Environ. Sci. Technol., 51(7), 649-703. https://doi.org/10.1080/10643389.2020.1734432
  17. Mehrabi, S., Houweling, D. and Dagnew, M. (2020), "Establishing mainstream nitrite shunt process in membrane aerated biofilm reactors: impact of organic carbon and biofilm scouring intensity", J. Water Process Eng., 37, 101460. https://doi.org/10.1016/j.jwpe.2020.101460
  18. Miura, H., Kigo, Y. and Terada, A. (2024), "Effectiveness of biofilm scouring in improving the carbon and nitrogen removal performance of membrane-aerated biofilm reactors installing novel high oxygen-transfer polyethylene membranes", J. Water Process Eng., 59, 104880. https://doi.org/10.1016/j.jwpe.2024.104880
  19. Patil, S.B., Chore, H.S. and Sawant, V.A. (2023), "Assessing pollutants' migration through saturated soil column", Membr. Water Treat., 14(2), 95. https://doi.org/10.12989/mwt.2023.14.2.095
  20. Rahimi, S., Modin, O. and Mijakovic, I. (2020), "Technologies for biological removal and recovery of nitrogen from wastewater", Biotechnol. Adv., 43, 107570. https://doi.org/10.1016/j.biotechadv.2020.107570
  21. Ravishankar, H., Nemeth, A., Massons, G., Puig, D., Zardoya, D., Carpi, N., Lens, P.N.L. and Heffernan, B. (2022), "Factors impacting simultaneous nitrification and denitrification in a membrane aerated biofilm reactor (MABR) system treating municipal wastewater", J. Environ. Chem. Eng., 10(5), 108120. https://doi.org/10.1016/j.jece.2022.108120
  22. Saikia, S., Costa, R.B., Sinharoy, A., Cunha, M.P., Zaiat, M. and Lens, P.N.L. (2022). "Selective removal and recovery of gallium and germanium from synthetic zinc refinery residues using biosorption and bioprecipitation", J. Environ. Manage., 317, 115396. https://doi.org/10.1016/j.jenvman.2022.115396
  23. Sinharoy, A., Kumar, M., Chaudhuri, R., Saikia, S. and Pakshirajan, K. (2022), "Simultaneous removal of selenite and heavy metals from wastewater and their recovery as nanoparticles using an inverse fluidized bed bioreactor", J. Clean. Prod., 376, 134248. https://doi.org/10.1016/j.jclepro.2022.134248
  24. Syron, E. and Casey, E. (2008), "Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements", Environ. Sci. Technol., 42, 1833-1844. https://doi.org/10.1021/es0719428
  25. Terada, A., Yamamoto, T., Igarashi, R., Tsuneda, S. and Hirata, A. (2006), "Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification", Biochem. Eng. J., 28(2), 123-130. https://doi.org/10.1016/j.bej.2005.10.001
  26. Tortajada, C. (2020), "Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals", NPJ Clean Water, 3(1), 22. https://doi.org/10.1038/s41545-020-0069-3
  27. Uri-Carreno, N., Nielsen, P.H., Gernaey, K.V. and Flores-Alsina, X. (2021), "Long-term operation assessment of a full-scale membrane-aerated biofilm reactor under Nordic conditions", Sci. Total Environ., 779, 146366. https://doi.org/10.1016/j.scitotenv.2021.146366
  28. Wang, K., Wang, S., Zhu, R., Miao, L. and Peng, Y. (2013), "Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR", Bioresour. Technol., 134, 212-218. https://doi.org/10.1016/j.biortech.2013.02.017
  29. Yun, G., Kwon, J., Park, S., Kim, Y. and Han, K. (2024), "Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures", Membr. Water Treat., 15(1), 1-9. https://doi.org/10.12989/mwt.2024.15.1.001
  30. Zhang, S., Ali, A., Su, J., Huang, T. and Li, M. (2022), "Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes". Water Res., 209, 117899. https://doi.org/10.1016/j.watres.2021.117899