References
- Abu Bakar, M.Z. (2012), "Saturation effects on mechanical excavatability of sand rock under selected rock cutting tools", Ph.D. Dissertation, Missouri University of Science and Technology, USA.
- Burger, W. and Dudouit, F. (2009), "The Hallandsas dual mode TBM", Proceedings of the Rapid Excavation and Tunneling Conference, Las Vegas, USA.
- Cho, J.W., Jeon, S., Jeong, H.Y. and Chang, S.H. (2013), "Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement", Tunn. Undergr. Sp. Tech., 35, 37-54. https://doi.org/10.1016/j.tust.2012.08.006.
- Eskikaya, S., Bilgin, N., Balci, C. and Tuncdemir, H. (2005), "From research to practice: Development of rapid excavation technologies", (Eds., Erdem & Solak), Underground Space Use: Analysis of the Past and Lessons for the Future. Taylor & Francis Group, London.
- Farrokh, E. (2020), "Positioning the Peripheral Cutters in Hard Rock TBMs", Tunn. Undergr. Sp. Tech., 9(3), 207-228. https://doi.org/10.22044/tuse.2020.9509.1392.
- Farrokh, E. (2021a), "Optimum design of the peripheral cutters' specification on the head profile for hard-rock TBMs", Tunn. Undergr. Sp. Tech., 107. https://doi.org/10.1016/j.tust.2020.103668.
- Farrokh, E. (2021b), "Uniformly distributed lace design for hard rock TBMs", Tunn. Undergr. Sp. Tech., 110. https://doi.org/10.1016/j.tust.2021.103829.
- Farrokh, E., Kim, D.Y. and Kyung, S.B. (2015). "Rotary cutting test for hard-rock TBM pPerformance evaluation", World Tunneling Conference, Dubrovnik, Croatia.
- Geng, Q., Bruland, A. and Macias, F.J. (2018). "Analysis on the relationship between layout and consumption of face cutters on hard rock Tunnel Boring Machines (TBMs)", Rock Mech. Rock Eng., 51, 279-297. https://doi.org/10.1007/s00603-017-1320-1.
- Geng, Q., Wei, Z., Menga, H. and Maciasb, F.J. (2016), "Mechanical performance of TBM cutterhead in mixed rock ground conditions", Tunn. Undergr. Sp. Tech., 57, 76-84. https://doi.org/10.1016/j.tust.2016.02.012.
- Han, D.Y., Cao, P., Liu, J. and Zhu, J.B. (2017), "An experimental study of dependence of optimum TBM cutter spacing on pre-set penetration depth in sandstone fragmentation", Rock Mech. Rock Eng., 50, 3209-3221. https://doi.org/10.1007/s00603-017-1275-2.
- Han, M., Cai, Z. and Qu, C. (2019), "On the loads for strength design of cutterhead of full-face rock tunnel boring machine", Chinese J. Mech. Eng., 32. https://doi.org/10.1186/s10033-019-0411-1.
- Hassanpour, J., Rostami, J., Khamehchiyan, M. and Bruland, A. (2009), "Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel", Geomech. Geoeng., 4(4), 287-297. https://doi.org/10.1080/17486020903174303.
- Huo, J., Sun, W., Chen, J., Su, P. and Deng, L. (2010). "Optimal disc cutters plane layout design of the full-face rock tunnel boring machine (TBM) based on a multi-objective genetic algorithm", J. Mech. Sci. Tech., 24(2), 521-528. https://doi.org/10.1007/s12206-009-1220-8.
- Huo, J., Sun, W., Chen, J. and Zhang, Z. (2011a), "Disc cutters plane layout design of the full-face rock tunnel boring machine (TBM) based on different layout patterns", Comput. Ind. Eng., 61, 1209-1225. https://doi.org/10.1016/j.cie.2011.07.011.
- Huo, J., Zhao, H., Zhang, X., Sun, W. and Zhao, Y. (2011b), "Cutters plane layout design of the full-face rock Tunnel Boring Machine (TBM) based on multi-spiral layout pattern", Adv. Mater. Res., 308-310, 1288-1291. https://doi.org/10.1016/j.cie.2011.07.011.
- Kim, Y., Hong, J., Shin, J. and Kim, B. (2022), "Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques", Geomech. Eng., 29(3), 249-258. https://doi.org/10.12989/gae.2022.29.3.249.
- Kim, K.Y., Jo, S.A., Ryu, H.H. and Cho, G.C. (2020), "Prediction of TBM performance based on specific energy", Geomech. Eng., 22(6), 489-496. https://doi.org/10.12989/gae.2020.22.6.489.
- Lin, L., Xia, Y., Li, Z., Wu, C., Cheng, Y. and Tan, Q. (2019), "Dynamic characteristics analysis with multi-directional coupling in a TBM mainframe", Chin. J. Mech. Eng., 32, 98. https://doi.org/10.1186/s10033-019-0412-0.
- Lislerud, A. (1997), "Principles of mechanical excavation", Tamrock Corp, POSIVA 97-12.
- Ozdemir, L., Miller, R. and Wang, F.D. (1978). "Mechanical tunnel boring prediction and machine design", NSF APR73-07776-A03. Colorado School of Mines. Golden, Colorado, USA.
- Pan, Y.C., Liu, Q.S., Liu, J.P., Huang, X., Liu, Q. and Peng, X.X. (2018), "Comparison between experimental and semi-theoretical disc cutter cutting forces: Implications for frame stiffness of the linear cutting machine", Arabian J. Geosci., 23, 233-245. https://doi.org/10.1007/s00603-018-1400-x.
- Pan, Y.C., Liu, Q.S., Peng, X.X., Liu, Q., Liu, J.P., Huang, X., Cui, X. and Cai, T. (2019), "Full-scale linear cutting tests to propose some empirical formulas for TBM disc cutter performance prediction", Rock Mech. Rock Eng., 52(5), 1803-1820. https://doi.org/10.1007/s00603-019-01865-x.
- Qi, G., Zhengying, W. and Hao, M. (2016). "An experimental research on the rock cutting process of the gage cutters for rock tunnel boring machine (TBM)", Tunn. Undergr. Sp. Tech., 52, 182-191. https://doi.org/10.1016/j.tust.2015.12.008.
- Pourhashemi, S.M., Ahangari, K., Hassanpour, J. and Eftekhari, S.M. (2022). "TBM performance analysis in very strong and massive rocks; case study: Kerman water conveyance tunnel project, Iran", Geomech. Geoeng., 17(4), 1110-1122. https://doi.org/10.1080/17486025.2021.1912410.
- Rostami, J. and Chang, S.H. (2017), "A closer look at the design of cutterheads for hard rock tunnel-boring machines", Engineering, 3(6), 892-904. https://doi.org/10.1016/j.eng.2017.12.009.
- Rostami, J. (1993), "Design optimization, performance prediction and economic analysis of tunnel boring machine for the construction of the proposed Yucca Mountain nuclear waste repository", M.S. Thesis, Colorado School of Mines, Golden, Colorado, USA.
- Rostami, J. (1997), "Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure", Ph.D. Dissertation, Colorado School of Mines, Golden, Colorado, USA, p. 249.
- Rostami, J. (2008), "Hard Rock TBM cutterhead modeling for design and performance", Geomech. Tunn., 1(1), 18-28. https://doi.org/10.1002/geot.200800002.
- Roxborough, F.F. and Phillips, H.R. (1975), "Rock excavation by disc cutter", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 12(12), 361-366. https://doi.org/10.1016/0148-9062(75)90547-1.
- Shao, X., Jiang, Y., Zhu, Z., Yang, Z., Wang, Z., Cheng, J. and Liu, Q. (2023), "TBM disc cutter ring type adaptability and rock-breaking efficiency: Numerical modeling and case study", Geomech. Eng., 34(1), 103-113. https://doi.org/10.12989/gae.2023.34.1.103.
- Sun, H., Guo, W., Liu, J., Song, L. and Liu, X. (2018), "Layout design for disc cutters based on analysis of TBM cutter-head structure", J. Cent. South Univ., 25, 812-830. https://doi.org/10.1007/s11771-018-3786-8.
- Thyagarajan, M.V. (2018), "The comparison of cutting forces on disc cutters in constant vs variable penetration modes", M.S. Thesis, Colorado School of Mines, Golden, Colorado, USA.
- Tuncdemir, H., Bilgin, N., Copur, H. and Balci, C. (2008), "Control of rock cutting efficiency by muck size", Int. J. Rock Mech. Min. Sci., 45(2), 278-288. https://doi.org/10.1016/j.ijrmms.2007.04.010.
- Xia, Y., Zhang, K. and Liu, J. (2015), "Design optimization of TBM disc cutters for different geological conditions", World J. Eng. Tech., 3(4). https://doi.org/10.4236/wjet.2015.34023.
- Yang, Z., Wang, L., Zhou, J., Li, D., Zhang, K. and Guo, X. (2023), "Mechanical characteristics of a tunnel boring machine cutterhead during rock breaking: Physical model tests and transient dynamic analysis", Adv. Mech. Eng., 15(3). https://doi.org/10.1177/16878132231159971.
- Zhao, Z., Gong, Q., Zhang, Y. and Zhao, J. (2007), "Prediction model of tunnel boring machine performance by ensemble neural networks", Geomech. Geoeng., 2(2), 123-128. https://doi.org/10.1080/17486020701377140.