DOI QR코드

DOI QR Code

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Zhibin Lu (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Zongxu Li (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Chun Wang (Henan Polytechnic University) ;
  • Xuelong Li (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Hao Hu (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology)
  • 투고 : 2024.03.28
  • 심사 : 2024.07.04
  • 발행 : 2024.07.25

초록

In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China [Grant Nos. 52274128 and 52174159], the Taishan Scholars Project Special Fund, the Open Fund for the Henan Key Laboratory for Green and Efficient Mining & Comprehensive Utilization of Mineral Resources (KCF2204), and the Open Fund for the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines [Grant No. SKLMRDPC22KF01]. We would like to thank Editage (www.editage.cn) for English language editing.

참고문헌

  1. Aminpour, M., Galindo-Torres, S.A., Scheuermann, A. and Li, L. (2018), "Pore-scale behavior of darcy flow in static and dynamic porous media", Phys. Rev. Appl., 9, 064025. https://doi.org/10.1103/PhysRevApplied.9.064025.
  2. Behera, S.K., Mishra, D.P., Singh, P., Mishra, K., Mandal, S.K., Ghosh, C.N., Kumar, R. and Mandal, P.K. (2021), "Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective", Constr. Build. Mater., 309, 125120. https://doi.org/10.1016/j.conbuildmat.2021.125120.
  3. Chen, S.J., Yin, D.W., Cao, F.W., Liu, Y. and Ren, K.Q. (2016), "An overview of integrated surface subsidence-reducing technology in mining areas of China", Nat. Hazards., 81, 1129-1145. https://doi.org/10.1007/s11069-015-2123-x.
  4. Chen, Y., Zhu, S. and Xiao, S. (2019), "Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts", Nat. Hazards., 99, 689-704. https://doi.org/10.1007/s11069-019-03767-1.
  5. Chen, S.J., Du, Z.W., Zhang, Z., Zhang, H.W., Xia, Z.G. and Feng, F. (2020), "Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill", J. Environ. Manag., 23, 117504. https://doi.org/10.1016/j.conbuildmat.2019.117504.
  6. Gao, H.D., Huang, Y.L., Li, W., Li, J.M., Ouyang, S.Y., Song, T., Lv, F., Zhai, W. and Ma, K. (2021), "Explanation of heavy metal pollution in coal mines of China from the perspective of coal gangue geochemical characteristics", Environ. Sci. Pollut. Res. Int., 28, 65363-65373. https://doi.org/10.1007/s11356-021-14766-w.
  7. Gavrishin, A.I. (2018), "Formation patterns of the chemical composition of mine waters in eastern Donbas", Dokl. Earth Sci., 481, 916-917. https://doi.org/10.1134/S1028334X18070127.
  8. Hakimi, M., Kiani, P., Alikhani, M., Feizi, N., Bajestani, A.M. and Alimard, P. (2020), "Reducing environmental pollution of fuel fly ash by extraction and removal vanadium pentoxide", Solid Fuel Chem., 54, 337-342. https://doi.org/10.3103/S0361521920050055.
  9. Helinski, M., Fahey, M. and Fourie, A. (2011), "Behavior of cemented paste backfill in two mine stopes: Measurements and modeling", J. Geotech. Geoenviron. Eng., 137, 171-182. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000418.
  10. Jabeen, I., Farooq, M. and Mir, N.A. (2019), "Variable mass and thermal properties in three-dimensional viscous flow: Application of Darcy law", J. Cent. South Univ., 26, 1271-1282. https://doi.org/10.1007/s11771-019-4086-7.
  11. Jiang, L.H., Niu, Y.L., Jin, W.Z., Gao, H.L. and Chen, L. (2022), "Influence of chloride salt type on chloride ion diffusion performance of alkali-activated slag mortar", Constr. Build. Mater., 351, 128930. https://doi.org/10.1016/j.conbuildmat.2022.128930.
  12. Jiang, N., Lv, K., Gao, Z., Jia, C., Ye, L., Meng, S. and Su, Q. (2023), "Experimental study on mechanical properties of single fracture-hole red sandstone", Front. Earth Sci., 10, 1083689. https://doi.org/10.3389/feart.2022.1083689.
  13. Jie, D.F., Xu, X. and Guo, F. (2021), "The future of coal supply in China based on non-fossil energy development and carbon price strategies", Energy, 220, 119644. https://doi.org/10.1016/j.energy.2020.119644.
  14. Kasap, T., Yilmaz, E. and Sari, M. (2022), "Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings", J. Environ. Manage., 314, 115034. https://doi.org/10.1016/j.jenvman.2022.115034.
  15. Leng, J.Y., Lin, X.B. and Wang, L.L. (2021), "Effects of osmosis on darcy flow in shales", Energy Fuels., 35, 4874-4884. https://doi.org/10.1021/acs.energyfuels.0c03924.
  16. Liu, X. and Cheng, Z. (2019), "Changes in subsidence-field surface movement in shallow-seam coal mining", J. S. Afr. Inst. Min. Metall., 119, 201-206. https://doi.org/10.17159/2411-9717/2019/v119n2a12.
  17. Li, Z.X., Yin, D.W., Jiang, N., Wang, F., Ding, Y.S. and Li, F.X. (2022a), "Deformation and failure characteristics of bimaterial samples consisting of sandstone and cemented coal gangue-fly ash backfill under uniaxial loading", Mineral., 12, 2. https://doi.org/10.3390/min12121546.
  18. Li, F.X., Yin, D.W., Wang, F., Jiang, N. and Li, X.L. (2022b), "Effects of combination mode on mechanical properties of bi-material samples consisting of rock and coal", J. Mater. Res. Technol., 19, 2156-2170. https://doi.org/10.1016/j.jmrt.2022.05.174.
  19. Ma, J.B., Yin, D.W., Jiang, N., Wang, S. and Yao, D.H. (2021), "Application of a superposition model to evaluate surface asymmetric settlement in a mining area with thick bedrock and thin loose layer", J. Cleaner Product., 314, 128075. https://doi.org/10.1016/j.jclepro.2021.128075.
  20. Ngo, I., Ma, L.Q., Zhai, J.T., Wang, Y.Y. and Wei, T.X. (2023), "Durability of CO2-fly ash-based backfill materials in cation water deterioration", Int. J. Min. Reclam. Environ., 37, 544-567. https://doi.org/10.1080/17480930.2023.2216498.
  21. Niu, X.H., Feng, G.R., Liu, Q., Han, Y.N. and Qian, R.P. (2022), "Numerical investigation on mechanism and fluid flow behavior of goaf water inrush: A case study of Dongyu coal mine", Nat. Hazards., 113, 1783-1802. https://doi.org/10.1007/s11069-022-05369-w.
  22. Orejarena, L. and Fall, M. (2010), "The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill", Bull. Eng. Geol. Environ., 69, 659-670. https://doi.org/10.1007/s10064-010-0326-7.
  23. Park, B., Jang, S.Y., Cho, J.Y. and Kim, J.Y. (2014), "A novel short-term immersion test to determine the chloride ion diffusion coefficient of cementitious materials", Constr. Build. Mater., 57, 169-178. https://doi.org/10.1016/j.conbuildmat.2014.01.086.
  24. Pedro, D., de Brito, J. and Evangelista, L. (2015), "Performance of concrete made with aggregates recycled from precasting industry waste: influence of the crushing process", Mater. Struct., 48, 3965-3978. https://doi.org/10.1617/s11527-014-0456-7.
  25. Qureshi, A.A., Kazi, T.G., Baig, J.A., Arain, M.B. and Afridi, H.I. (2020), "Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass", Chemosphere, 255, 126960. https://doi.org/10.1016/j.chemosphere.2020.126960.
  26. Sanchez, T., Conciatori, D., Laferriere, F. and Sorelli, L. (2020), "Modelling capillary effects on the reactive transport of chloride ions in cementitious materials", Cement. Concrete Res., 131, 106033. https://doi.org/10.1016/j.cemconres.2020.106033.
  27. Sun, Q., Wei, X.D. and Wen, Z.J. (2022), "Preparation and strength formation mechanism of surface paste disposal materials in coal mine collapse pits", J. Mater. Res. Technol., 17, 1221-1231. https://doi.org/10.1016/j.jmrt.2022.01.062.
  28. Wang, S., Luo, K., Wang, X. and Sun, Y.Z. (2016), "Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories", Environ. Pollut., 209, 107-113. https://doi.org/10.1016/j.envpol.2015.11.026.
  29. Wang, Q. and Song, X.X. (2021a), "Why do China and India burn 60% of the world's coal? A decomposition analysis from a global perspective", Energy, 227, 120389. https://doi.org/10.1016/j.energy.2021.120389.
  30. Wang, J., Zhang, C., Fu, J.X., Song, W.D. and Zhang, Y.F. (2021b), "Effect of water saturation on mechanical characteristics and damage behavior of cemented paste backfill", J. Mater. Res. Technol., 15, 6624-6639. https://doi.org/10.1016/j.jmrt.2021.11.078.
  31. Xu, G., Fan, K., Wang, K. and Ning, J. (2022), "Paste backfill corrosion mechanisms in chloride and sulfate environments", Minerals., 12, 551. https://doi.org/10.3390/min12050551.
  32. Yedra, E., Ferrandez, D., Moron, C. and Saiz, P. (2022), "New test methods to determine water absorption by capillarity. Experimental study in masonry mortars", Constr. Build. Mater., 319, 125988. https://doi.org/10.1016/j.conbuildmat.2021.125988.
  33. Yin, D.W., Ding, Y.S., Jiang, N., Li, F.X., Zhang, J.C. and Xu, H.H. (2022a), "Mechanical properties and damage characteristics of coal samples under water immersion pressure", Lithosphere., 10, 1278783. https://doi.org/10.2113/2022/1278783.
  34. Yin, D.W., Chen, S.J., Ge, Y. and Liu, R. (2021), "Mechanical properties of rock-coal bi-material samples with different lithologies under uniaxial loading", J. Mater. Res. Technol., 10, 322-338. https://doi.org/10.1016/j.jmrt.2020.12.010.
  35. Yin, D.W., Chen, S.J., Sun, X.Z. and Jiang, N. (2022b), "Effects of interface angles on properties of rock-cemented coal gangue-fly ash backfill bi-materials", Geomech. Geoeng., 24, 81-89. https://doi.org/10.12989/gae.2021.24.1.081.