DOI QR코드

DOI QR Code

Resistance of Wood Plastic Composites Having Silica Filler to Subterranean Termite

  • Aujchariya CHOTIKHUN (Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus) ;
  • Wa Ode Muliastuty ARSYAD (Center for Standardization of Sustainable Forest Management Instruments) ;
  • Emilia-Adela SALCA (Faculty of Furniture Design and Wood Engineering, Transilvania University of Brasov) ;
  • Yusuf Sudo HADI (Faculty of Forestry and Environment, Bogor Agricultural University) ;
  • Salim HIZIROGLU (Department of Natural Resource Ecology & Management, Oklahoma State University)
  • Received : 2023.11.28
  • Accepted : 2024.04.29
  • Published : 2024.07.25

Abstract

Rubberwood (Hevea brasiliensis) has excellent physical and mechanical properties and is one of the most widely used species in Southeast Asia. However, it has poor resistance to subterranean termite attacks due to its high sugar and starch contents. The objective of this study was to evaluate the termite resistance of experimental wood-plastic composite (WPC) panels manufactured from rubberwood flour, polyethylene terephthalate, and silica in three different weight ratios (1/2/7, 1/3/6, and 1/4/5). The panels were exposed to Coptotermes curvignathus subterranean termites in a no-choice test under laboratory conditions based on Indonesian standards. Solid rubberwood used as control samples presented poor resistance, exhibiting 23.1% weight loss due to subterranean termite attack, as indicated by low termite mortality and high wood weight loss. In contrast, the WPC samples demonstrated extreme resistance, with weight loss ranging from 0.19% to 0.23%. Based on the findings of this study, the high termite mortality and overall low mass loss of the samples indicate that such manufactured panels could provide a high level of protection with regard to Indonesian standards.

Keywords

Acknowledgement

The authors greatly appreciate the government budget allocated to Songkla University, Surat Thani Campus, Thailand, for conducting this research. Special thanks are extended to the Indonesian Ministry of Research and Technology, National Research and Innovation Agency, Deputy of Research Strengthening and Development, for their support through the World Class Research. We also appreciate Bogor Agricultural University, Indonesia, for providing the research facilities.

References

  1. Adfa, M., Romayasa, A., Kusnanda, A.J., Avidlyandi, A., Yudha, S.S., Banon, C., Gustian, I. 2020. Chemical components, antitermite and antifungal activities of cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology 48(1): 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107
  2. Ahmed, S., Fatima, R., Hassan, B. 2020. Evaluation of different plant derived oils as wood preservatives against subterranean termite Odontotermes obesus. Maderas. Ciencia y tecnologia 22(1): 109-120. Arinana, Tsunoda, K., Herliyana, E.N., Hadi, Y.S. 2012.
  3. Termite-susceptible species of wood for inclusion as a reference in Indonesian standardized laboratory testing. Insects 3(2): 396-401.
  4. Arinana, A., Rahman, M.M., Silaban, R.E.G., Himmi, S.K., Nandika, N. 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology 50(6): 458-474. https://doi.org/10.5658/WOOD.2022.50.6.458
  5. Arsyad, W.O.M., Efiyanti, L., Trisatya, D.R. 2020. Termiticidal activity and chemical components of bamboo vinegar against subterranean termites under different pyrolysis temperatures. Journal of the Korean Wood Science and Technology 48(5): 641-650. https://doi.org/10.5658/WOOD.2020.48.5.641
  6. Bari, E., Sistani, A., Taghiyari, H.R., Morrell, J.J., Cappellazzi, J. 2017. Influence of test method on biodegradation of bamboo-plastic composites by fungi. Maderas. Ciencia y tecnologia 19(4): 455-462.
  7. Bari, E., Taghiyari, H.R., Schmidt, O., Ghorbani, A., Aghababaei, H. 2015. Effects of nano-clay on biological resistance of wood-plastic composite against five wood-deteriorating fungi. Maderas. Ciencia y tecnologia 17(1): 205-212.
  8. Chotikhun, A., Hiziroglu, S., Kard, B., Konemann, C., Buser, M., Frazier, S. 2018. Measurement of termite resistance of particleboard panels made from Eastern redcedar using nano particle added modified starch as binder. Measurement 120: 169-174. https://doi.org/10.1016/j.measurement.2018.02.028
  9. Chotikhun, A., Kittijaruwattana, J., Arsyad, W.O.M., Salca, E.A., Hadi, Y.S., Hiziroglu, S. 2022. Some properties of wood plastic composites made from rubberwood, recycled plastic and silica. Forests 13(3): 427.
  10. Deka, B.K., Maji, T.K. 2012. Effect of silica nanopowder on the properties of wood flour/polymer composite. Polymer Engineering and Science 52(7): 1516-1523. https://doi.org/10.1002/pen.23097
  11. Delviawan, A., Suzuki, S., Kojima, Y., Kobori, H. 2019. The influence of filler characteristics on the physical and mechanical properties of wood plastic composite(s). Reviews in Agricultural Science 7: 1-9. https://doi.org/10.7831/ras.7.1
  12. Fatima, Z., Ahmed, S., Hassan, B. 2021. Combined effects of neem (Azadirachta indica) and sesame (Sesamum indicum) oil as a wood preservative on subterranean termites in the field. Maderas. Cienciay tecnologia 23: 1-8. https://doi.org/10.4067/S0718-221X2021000100435
  13. Gao, W., Du, G. 2015. Physico-mechanical properties of plywood bonded by nano cupric oxide (Cuo) modified PF resins against subterranean termites. Maderas. Ciencia y tecnologia 17(1): 129-138.
  14. Garcia, C.M., Eusebio, D.A., San Pablo, M.R., Villena, E.M. 2012. Resistance of wood wool cement board to the attack of Philippine termites. Insects 3(1): 18-24. https://doi.org/10.3390/insects3010018
  15. Gardner, D.J., Bozo, A. 2018. Ten-year field study of wood plastic composites in Santiago, Chile: Biological, mechanical and physical property performance. Maderas. Ciencia y tecnologia 20(2): 257-266. https://doi.org/10.4067/S0718-221X2018005002901
  16. Hadi, Y.S., Massijaya, M.Y., Abdillah, I.B., Pari, G., Arsyad, W.O.M. 2020. Color change and resistance to subterranean termite attack of mangium (Acacia mangium) and sengon (Falcataria moluccana) smoked wood. Journal of the Korean Wood Science and Technology 48(1): 1-11. https://doi.org/10.5658/WOOD.2020.48.1.1
  17. Hadi, Y.S., Massijaya, M.Y., Arinana, A. 2016. Subterranean termite resistance of polystyrene-treated wood from three tropical wood species. Insects 7(3): 37.
  18. Hadi, Y.S., Massijaya, M.Y., Hermawan, D., Arinana, A. 2015. Feeding rate of termites in wood treated with borax, acetylation, polystyrene, and smoke. Journal of the Indian Academy of Wood Science 12(1): 74-80. https://doi.org/10.1007/s13196-015-0146-2
  19. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of methyl methacrylate-impregnated wood to subterranean termite attack. Journal of the Korean Wood Science and Technology 46(6): 748-755. https://doi.org/10.5658/WOOD.2018.46.6.748
  20. Hermawan, D., Mubarok, M., Abdillah, I.B., Hadi, Y.S., Yosi, C., Chotikhun, A., Pari, R., Pari, G. 2024. Resistance of polystyrene-impregnated glued laminated lumbers after exposure to subterranean termites in a field. Journal of the Korean Wood Science and Technology 52(1): 70-86. https://doi.org/10.5658/WOOD.2024.52.1.70
  21. Ibach, R.E., Gnatowski, M., Sun, G. 2013. Field and laboratory decay evaluations of wood-plastic composites. Forest Products Journal 63(3-4): 76-87. https://doi.org/10.13073/FPJ-D-12-00115
  22. Ibach, R.E., Hadi, Y.S., Clemons, C.M., Yusuf, S. 2007. Termite resistance of wood-flour-filled high density polyethylene (HDPE) composites. In: Krakow, Poland, Presented at Ninth International Conference on Frontiers of Polymers and Advanced Materials, p. 89.
  23. Indonesian National Standard [SNI]. 2014. Wood and Wood Products Resistance Test to Wood-destroying Organism. SNI 7207-2014. Indonesian National Standard Bureau, Jakarta, Indonesia.
  24. Kadir, K. 1973. Kadar Air Kering Udara di Bogor. Forest Products Research Institute, Bogor, Indonesia.
  25. Kadir, R. 2017. Toxic effects of three selected Malaysian timbers plant extracts against subterranean termites. Maderas. Ciencia y tecnologia 19(4): 417-432.
  26. Kumar, A., Kalleshwaraswamy, C.M., Sharma, R., Sharma, P., Poonia, A. 2022. Biodegradation of plastic using termites and their gut microbiota: A mini review. IOP Conference Series: Earth and Environmental Science 1057: 012016.
  27. Lopez, Y.M., Goncalves, F.G., Paes, J.B., Gustave, D., Nantet, A.C.T., Sales, T.J. 2020. Resistance of wood plastic composite produced by compression to termites Nasutitermes corniger (Motsch.) and Cryptotermes brevis (Walker). International Biodeterioration & Biodegradation 152: 104998.
  28. Lopez-Naranjo, E.J., Alzate-Gaviria, L.M., HernandezZarate, G., Reyes-Trujeque, J., Cruz-Estrada, R.H. 2013. Effect of accelerated weathering and termite attack on the tensile properties and aesthetics of recycled HDPE-pinewood composites. Journal of Thermoplastic Composite Materials 27(6): 831-844. https://doi.org/10.1177/0892705712473625
  29. Ministry of Environment and Forestry [MOEF]. 2020. Vademecum of Indonesian Forestry 2020. Ministry of Environment and Forestry, Jakarta, Indonesia.
  30. Mun, S.P., Nicholas, D.D. 2017. Effect of proanthocyanidin-rich extracts from Pinus radiata bark on termite feeding deterrence. Journal of the Korean Wood Science and Technology 45(6): 720-727. https://doi.org/10.5658/WOOD.2017.45.6.720
  31. Nandika, D., Herliyana, E.N., Arinana, A., Hadi, Y.S., Rahman, M.M. 2023. Stain fungi and discoloration control on rubberwood (Hevea brasiliensis Muell. Arg.) by vacuum-pressure treatment with catechin from gambir (Uncaria gambir Roxb.). Journal of the Korean Wood Science and Technology 51(3): 183-196. https://doi.org/10.5658/WOOD.2023.51.3.183
  32. Nkogo, L.F.E., Bopenga, C.S.A.B., Ngohang, F.E., Mengome, L.E., Angone, S.A., Engonga, P.E. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (harms) J. Leonard (Kevazingo) bark extracts from gabon. Journal of the Korean Wood Science and Technology 50(2): 113-125.
  33. Nuryawan, A., Hutauruk, N.O., Purba, E.Y.S., Masruchin, N., Batubara, R., Risnasar, I., Satrio, F.K., Rahmawaty, Basyuni, M., McKay, D. 2020. Properties of wood composite plastics made from predominant low density polyethylene (LDPE) plastics and their degradability in nature. PLOS ONE 15(8): e0236406.
  34. Seo, Y.R., Kim, B.J., Lee, S.Y. 2019. Effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of recycled WPCs. Journal of the Korean Wood Science and Technology 47(4): 472-485. https://doi.org/10.5658/WOOD.2019.47.4.472
  35. Shiny, K.S., Sundararaj, R., Mamatha, N., Lingappa, B. 2019. A new approach to wood protection: Preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas. Ciencia y tecnologia 21(3): 347-356. https://doi.org/10.4067/S0718-221X2019005000307
  36. Syofuna, A., Banana, A.Y., Nakabonge, G. 2012. Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas. Ciencia ytecnologia 14(2): 155-163. https://doi.org/10.4067/S0718-221X2012000200003
  37. Thybring, E.E. 2013. The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. International Biodeterioration & Biodegradation 82: 87-95. https://doi.org/10.1016/j.ibiod.2013.02.004
  38. Wang, H., Zhang, X., Guo, S., Liu, T. 2021. A review of coextruded wood-plastic composites. Polymer Composites 42(9): 4174-4186. https://doi.org/10.1002/pc.26189
  39. Xu, K., Feng, J., Zhong, T., Zheng, Z., Chen, T. 2015. Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites. International Biodeterioration & Biodegradation 100: 106-115. https://doi.org/10.1016/j.ibiod.2015.02.002
  40. Yang, S. 2019. A feasibility study of wood-plastic composite paver block for basic rest areas. Journal of the Korean Wood Science and Technology 47(1): 51-65. https://doi.org/10.5658/WOOD.2019.47.1.51
  41. Yang, S., Luo, S., Zhang, L., Ji, N., Li, D., Wu, Y. 2018. An overview on functionalization modification of wood-plastic composites. Materials Reports 32(17): 3090-3098.
  42. Zhang, D., Stanturf, J. 2008. Forest Plantations. Elsevier, Amsterdam, The Netherlands.