DOI QR코드

DOI QR Code

Effect of (Al, Nb) Co-Doping on the Complex Dielectric Properties and Electric Modulus of BaTiO3-Based Ceramics

  • Ziheng Huang (School of Physics and Electronic Information, Yantai University) ;
  • Ruifeng Niu (School of Physics and Electronic Information, Yantai University) ;
  • Depeng Wang (School of Physics and Electronic Information, Yantai University) ;
  • Weitian Wang (School of Physics and Electronic Information, Yantai University)
  • 투고 : 2024.05.23
  • 심사 : 2024.06.25
  • 발행 : 2024.07.27

초록

In this work, a series of BaTiO3-based ceramic materials, Ba(Al0.5Nb0.5)xTi1-xO3 (x = 0, 0.04, 0.06, 0.08), were synthesized using a standard solid-state reaction technique. X-ray diffraction profiles indicated that the Al+Nb co-doping into BaTiO3 does not change the crystal structure significantly with a doping concentration up to 8 %. The doping ions exist in Al3+ and Nb5+ chemical states, as revealed by X-ray photoelectron spectroscopy. The frequency-dependent complex dielectric properties and electric modulus were studied in the temperature range of 100~380 K. A colossal dielectric permittivity (>1.5 × 104) and low dielectric loss (<0.01) were demonstrated at the optimal dopant concentration x = 0.04. The observed dielectric behavior of Ba(Al0.5Nb0.5)xTi1-xO3 ceramics can be attributed to the Universal Dielectric Response. The complex electric modulus spectra indicated the grains exhibited a significant decrease in capacitance and permittivity with increasing co-doping concentration. Our results provide insight into the roles of donor and acceptor co-doping on the properties of BaTiO3-based ceramics, which is important for dielectric and energy storage applications.

키워드

참고문헌

  1. N. Sasirekha, B. Rajesh and Y. W. Chen, Ind. Eng. Chem. Res., 47, 1868 (2008).
  2. L. Huang, Z. Chen and J. D. Wilson, J. Appl. Phys., 100, 034316 (2006).
  3. M. Wohlfahrt-Mehrens, J. Schenk and P. M. Wilde, J. Power Sources, 105, 182 (2002).
  4. P. Zheng and J. L. Zhang, Acta Mater., 60, 5022 (2012).
  5. A. Ioachim, M. I. Toacsan and M. G. Banciu, J. Eur. Ceram. Soc., 27, 1117 (2007).
  6. Y. Hiruma, H. Nagata and T. Takenaka, J. Ceram. Soc. Jpn., 112, S1125 (2004).
  7. J. G. Park, T. S. Oh and Y. H. Kim, J. Mater. Sci., 27, 5713 (1992).
  8. K. M. Batoo, M. Hadi, A. Chauhan, R. Verma, M. Singh, O. M. Aldossary and G. K. Bhargava, Appl. Phys. A: Mater. Sci. Process., 128, 283 (2022).
  9. W. C. Vittayakorn, A. Ruangphanit and D. Bunjong, J. Adv. Dielectr., 1, 229 (2011).
  10. H. Dong, W. U. Ying and M. Ji-Yuan, J. Inorg. Mater., 32, 219 (2017).
  11. S. J. Lee, S. M. Park and Y. H. Han, Jpn. J. Appl. Phys., 48, 031403 (2009).
  12. W. Q. Cao, J. W. Xiong and J. P. Sun, Mater. Chem. Phys., 106, 338 (2007).
  13. J. X. Feng, D. S. Hua and S. T. Xiu, Ferroelectrics, 488, 10 (2015).
  14. N. Gouitaa, F. Z. Ahjyaje, T. Lamcharfi, F. Abdi and M. Haddad, J. Mater. Res., 38, 2486 (2023).
  15. L. Ren, M. Zhang, L. Xin and J. Zhai, Solid State Sci., 131, 106939 (2022).
  16. J. Peng, J. Zeng, L. Zheng, G. Li and A. Kassiba, J. Alloy Compd., 796, 221 (2019).
  17. S. H. Cha and Y. H. Han, Jpn. J. Appl. Phys., 45, 7797 (2006).
  18. X. Zhu, J. Zhu and S. Zhou, J. Cryst. Growth, 310, 434 (2008).
  19. S. Kongtaweelert, D. C. Sinclair and S. Panichphant, Curr. Appl. Phys., 6, 474 (2006).
  20. A. K. Jonscher, Nature, 267, 673 (1977).
  21. N. Bonanos, R. K. Slotwinski and B. C. H. Steele, J. Mater. Sci. Lett., 3, 245 (1984).
  22. W. Hu, Y. Liu, R. L. Withers, T. J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink and J. Wong-Leung, Nat. Mater., 12, 821 (2013).
  23. T. B. Adams, D. C. Sinclair and A. R.West, Phys. Rev. B, 73, 094124 (2006).
  24. J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith and J. R. Hardy, Phys. Rev. B, 70, 144106 (2004).
  25. C. Mu, H. Zhang, Y. He, J. Shen and P. Liu, J. Phys. D: Appl. Phys., 42, 175410 (2009).
  26. F. T. Z. Toma, I. N. Esha, Md. Al-Amin, M. N. I. Khan and K. H. Maria, J. Ceram. Process. Res., 18, 701 (2017).
  27. F. Si, B. Tang, Z. Fang, H. Li and S. Zhang, J. Alloy Compd., 819, 153004 (2020).
  28. K. J. Lee and W. S. Cho, J. Ceram. Process. Res., 13, 527 (2012).
  29. J. Ji, X. Liu, H. Jiang, D. Wei, Y. Li and M. Li, iScience, 23, 101013 (2020).
  30. I. Soibam, S. Phanjoubam and H. B. Sharma, Solid State Commun., 148, 399 (2008).