과제정보
Figures were constructed using BioRender.com.
참고문헌
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-821 https://doi.org/10.1126/science.1225829
- Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 1994;14:8096-8106
- Gallagher DN, Haber JE. Repair of a site-specific DNA cleavage: old-school lessons for Cas9-mediated gene editing. ACS Chem Biol 2018;13:397-405
- van den Bosch M, Lohman PH, Pastink A. DNA double-strand break repair by homologous recombination. Biol Chem 2002;383:873-892
- Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucleic Acids 2017;7:53-60 https://doi.org/10.1016/j.omtn.2017.02.006
- Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010;11:181-190 https://doi.org/10.1038/nrg2749
- Chavez A, Tuttle M, Pruitt BW, et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016;13:563-567 https://doi.org/10.1038/nmeth.3871
- Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 2017;551:464-471 Erratum in: Nature 2018;559:E8
- Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533:420-424 https://doi.org/10.1038/nature17946
- Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149-157 https://doi.org/10.1038/s41586-019-1711-4
- Fortier LA. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005;34:415-423 https://doi.org/10.1111/j.1532-950X.2005.00063.x
- Umar S. Intestinal stem cells. Curr Gastroenterol Rep 2010;12:340-348 https://doi.org/10.1007/s11894-010-0130-3
- Dzierzak E, Bigas A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 2018;22:639-651 https://doi.org/10.1016/j.stem.2018.04.015
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676 https://doi.org/10.1016/j.cell.2006.07.024
- Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012;481:295-305 https://doi.org/10.1038/nature10761
- Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 2018;200:e00580-17
- Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013;31:230-232 https://doi.org/10.1038/nbt.2507
- Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-823 https://doi.org/10.1126/science.1231143
- Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-826 https://doi.org/10.1126/science.1232033
- Guo N, Liu JB, Li W, Ma YS, Fu D. The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res 2022;40:135-152 https://doi.org/10.1016/j.jare.2021.11.018
- Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759-771 https://doi.org/10.1016/j.cell.2015.09.038
- Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016;532:517-521 https://doi.org/10.1038/nature17945
- Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016;353:aaf5573
- Szczelkun MD, Tikhomirova MS, Sinkunas T, et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 2014;111:9798-9803 https://doi.org/10.1073/pnas.1402597111
- Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014;156:935-949 https://doi.org/10.1016/j.cell.2014.02.001
- McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 2008;24:529-538 https://doi.org/10.1016/j.tig.2008.08.007
- Farboud B, Jarvis E, Roth TL, et al. Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms. J Vis Exp 2018;(135):57350
- Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014;24:1012-1019 https://doi.org/10.1101/gr.171322.113
- Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: hopes and challenges. Biomedicines 2018;6:105
- Chapman JE, Gillum D, Kiani S. Approaches to reduce CRISPR off-target effects for safer genome editing. Appl Biosaf 2017;22:7-13 https://doi.org/10.1177/1535676017694148
- Shen CC, Hsu MN, Chang CW, et al. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res 2019;47:e13
- Marino ND, Pinilla-Redondo R, Csorgo B, Bondy-Denomy J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods 2020;17:471-479 https://doi.org/10.1038/s41592-020-0771-6
- Pawluk A, Davidson AR, Maxwell KL. Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 2018;16:12-17 https://doi.org/10.1038/nrmicro.2017.120
- Zhu Y, Gao A, Zhan Q, et al. Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins. Mol Cell 2019;74:296-309.e7 https://doi.org/10.1016/j.molcel.2019.01.038
- Harrington LB, Doxzen KW, Ma E, et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 2017;170:1224-1233.e15 https://doi.org/10.1016/j.cell.2017.07.037
- Bondy-Denomy J, Garcia B, Strum S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 2015;526:136-139 https://doi.org/10.1038/nature15254
- Brunet E, Jasin M. Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol 2018;1044:15-25 https://doi.org/10.1007/978-981-13-0593-1_2
- Rose JC, Popp NA, Richardson CD, et al. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs. Nat Commun 2020;11:2697
- Amendola M, Brusson M, Miccio A. CRISPRthripsis: the risk of CRISPR/Cas9-induced chromothripsis in gene therapy. Stem Cells Transl Med 2022;11:1003-1009 https://doi.org/10.1093/stcltm/szac064
- Wen W, Zhang XB. CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells. Exp Hematol 2022;110:13-19 https://doi.org/10.1016/j.exphem.2022.03.002
- Lee J, Lim K, Kim A, et al. Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nat Commun 2023;14:1786
- Thuronyi BW, Koblan LW, Levy JM, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 2019;37:1070-1079 Erratum in: Nat Biotechnol 2019;37:1091
- Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 2017;35:371-376 https://doi.org/10.1038/nbt.3803
- Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity. Sci Adv 2017;3:eaao4774
- Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014;42:D980-D985 https://doi.org/10.1093/nar/gkt1113
- Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016;44:D862-D868 https://doi.org/10.1093/nar/gkv1222
- Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883-891 Erratum in: Nat Biotechnol 2020;38:901
- Rothgangl T, Dennis MK, Lin PJC, et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021;39:949-957 https://doi.org/10.1038/s41587-021-00933-4
- Tu T, Song Z, Liu X, et al. A precise and efficient adenine base editor. Mol Ther 2022;30:2933-2941 https://doi.org/10.1016/j.ymthe.2022.07.010
- Chen L, Zhang S, Xue N, et al. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol 2023;19:101-110 https://doi.org/10.1038/s41589-022-01163-8
- Grunewald J, Zhou R, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol 2020;38:861-864 https://doi.org/10.1038/s41587-020-0535-y
- Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 2020;38:865-869 Erratum in: Nat Biotechnol 2020;38:901
- Zhang X, Zhu B, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 2020;38:856-860 https://doi.org/10.1038/s41587-020-0527-y
- Chen L, Park JE, Paa P, et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun 2021;12:1384
- Sun N, Zhao D, Li S, Zhang Z, Bi C, Zhang X. Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Mol Ther 2022; 30:2452-2463 https://doi.org/10.1016/j.ymthe.2022.03.023
- Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018; 361:1259-1262 https://doi.org/10.1126/science.aas9129
- Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 2015;16:257
- Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018;19:770-788 Erratum in: Nat Rev Genet 2018;19:801
- Park SJ, Jeong TY, Shin SK, et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol 2021;22:170
- Kweon J, Hwang HY, Ryu H, Jang AH, Kim D, Kim Y. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol Ther 2023;31:249-259 https://doi.org/10.1016/j.ymthe.2022.09.008
- Chen PJ, Hussmann JA, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021;184:5635-5652.e29 https://doi.org/10.1016/j.cell.2021.09.018
- Nelson JW, Randolph PB, Shen SP, et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2022;40:402-410 Erratum in: Nat Biotechnol 2022;40:432
- Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013;154:442-451 https://doi.org/10.1016/j.cell.2013.06.044
- Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013;152:1173-1183 Erratum in: Cell 2021;184:844
- Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159:647-661 https://doi.org/10.1016/j.cell.2014.09.029
- Konermann S, Brigham MD, Trevino A, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013;500:472-476 https://doi.org/10.1038/nature12466
- Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015;517:583-588 https://doi.org/10.1038/nature14136
- Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods 2015;12:326-328 https://doi.org/10.1038/nmeth.3312
- Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014;159:635-646 https://doi.org/10.1016/j.cell.2014.09.039
- Wei R, Yuan F, Wu Y, et al. Construction of a GLI3 compound heterozygous knockout human embryonic stem cell line WAe001-A-20 by CRISPR/Cas9 editing. Stem Cell Res 2018;32:139-144 https://doi.org/10.1016/j.scr.2018.09.010
- Wang Z, Cui Y, Shan Y, et al. Generation of a MCPH1 knockout human embryonic stem cell line by CRISPR/Cas9 technology. Stem Cell Res 2020;49:102105
- uberbacher C, Obergasteiger J, Volta M, et al. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Res 2019;41:101656
- Wu J, Hunt SD, Xue H, Liu Y, Darabi R. Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology. Stem Cell Res 2016;16:220-228 https://doi.org/10.1016/j.scr.2016.01.003
- Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020;209:107501
- Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020;11:345
- Zhu Z, Verma N, Gonzalez F, Shi ZD, Huangfu D. A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Reports 2015;4: 1103-1111 https://doi.org/10.1016/j.stemcr.2015.04.016
- Zhou J, Wang C, Zhang K, et al. Generation of human embryonic stem cell line expressing zsGreen in cholinergic neurons using CRISPR/Cas9 system. Neurochem Res 2016; 41:2065-2074 https://doi.org/10.1007/s11064-016-1918-9
- Habib O, Habib G, Hwang GH, Bae S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 2022;50:1187-1197 https://doi.org/10.1093/nar/gkab1295
- Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 2014;141:219-223 https://doi.org/10.1242/dev.103341
- Park CY, Kim DH, Son JS, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015;17:213-220 https://doi.org/10.1016/j.stem.2015.07.001
- Miki T, Vazquez L, Yanuaria L, et al. Induced pluripotent stem cell derivation and ex vivo gene correction using a mucopolysaccharidosis type 1 disease mouse model. Stem Cells Int 2019;2019:6978303
- Hagberg B, Aicardi J, Dias K, Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol 1983;14:471-479 https://doi.org/10.1002/ana.410140412
- Le TTH, Tran NT, Dao TML, et al. Efficient and precise CRISPR/Cas9-mediated MECP2 modifications in human-induced pluripotent stem cells. Front Genet 2019;10:625
- Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron 2018;98:1141-1154.e7 Erratum in: Neuron 2018;98:1294
- Yang Y, Zhang X, Yi L, et al. Naive induced pluripotent stem cells generated from β-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med 2016;5:8-19 Erratum in: Stem Cells Transl Med 2016;5:267
- Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int 2009;75:1264-1271 https://doi.org/10.1038/ki.2009.32
- Esteve J, Blouin JM, Lalanne M, et al. Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem Biophys Res Commun 2019;517:677-683 https://doi.org/10.1016/j.bbrc.2019.07.109
- Mykkanen K, Savontaus ML, Juvonen V, et al. Detection of the founder effect in Finnish CADASIL families. Eur J Hum Genet 2004;12:813-819 https://doi.org/10.1038/sj.ejhg.5201221
- Vuorio AF, Aalto-Setala K, Koivisto UM, et al. Familial hypercholesterolaemia in Finland: common, rare and mild mutations of the LDL receptor and their clinical consequences. Finnish FH-group. Ann Med 2001;33:410-421 https://doi.org/10.3109/07853890108995954
- Jalil S, Keskinen T, Maldonado R, et al. Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Reports 2021;16:3064-3075 https://doi.org/10.1016/j.stemcr.2021.10.017
- Chang KH, Huang CY, Ou-Yang CH, et al. In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p.G2019S mutation. Stem Cell Res Ther 2021;12:508
- Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv 2021;7:eabg4910
- Zhou M, Tang S, Duan N, et al. Targeted-deletion of a tiny sequence via prime editing to restore SMN expression. Int J Mol Sci 2022;23:7941
- Luo Y, Xu X, An X, Sun X, Wang S, Zhu D. Targeted inhibition of the miR-199a/214 cluster by CRISPR interference augments the tumor tropism of human induced pluripotent stem cell-derived neural stem cells under hypoxic condition. Stem Cells Int 2016;2016:3598542
- Bozdag SC, Yuksel MK, Demirer T. Adult stem cells and medicine. Adv Exp Med Biol. 2018;1079:17-36 https://doi.org/10.1007/5584_2018_184
- Brunetti L, Gundry MC, Kitano A, Nakada D, Goodell MA. Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9. J Vis Exp 2018;(134):57278
- Gundry MC, Brunetti L, Lin A, et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep 2016;17:1453-1461 https://doi.org/10.1016/j.celrep.2016.09.092
- Moore RD, Chaisson RE. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS 1999;13:1933-1942 https://doi.org/10.1097/00002030-199910010-00017
- Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 2017;25:1782-1789 https://doi.org/10.1016/j.ymthe.2017.04.027
- Xiao Q, Chen S, Wang Q, et al. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology 2019;16:15 Erratum in: Retrovirology 2019;16:20
- Moss AJ. Long QT syndrome. JAMA 2003;289:2041-2044 https://doi.org/10.1001/jama.289.16.2041
- Qi T, Wu F, Xie Y, et al. Base editing mediated generation of point mutations into human pluripotent stem cells for modeling disease. Front Cell Dev Biol 2020;8:590581
- Wilde AAM, Amin AS. Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol 2018;4:569-579 https://doi.org/10.1016/j.jacep.2018.03.006
- Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 2016;539:384-389 https://doi.org/10.1038/nature20134
- Zeng J, Wu Y, Ren C, et al. Therapeutic base editing of human hematopoietic stem cells. Nat Med 2020;26:535-541 https://doi.org/10.1038/s41591-020-0790-y
- Sangkitporn S, Rerkamnuaychoke B, Sangkitporn S, Mitrakul C, Sutivigit Y. Hb G Makassar (beta 6:Glu-Ala) in a Thai family. J Med Assoc Thai 2002;85:577-582
- Chu SH, Packer M, Rees H, et al. Rationally designed base editors for precise editing of the sickle cell disease mutation. CRISPR J 2021;4:169-177 https://doi.org/10.1089/crispr.2020.0144
- Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 2021;595:295-302 https://doi.org/10.1038/s41586-021-03609-w
- Miller SM, Wang T, Randolph PB, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 2020;38:471-481 https://doi.org/10.1038/s41587-020-0412-8
- Escobar H, Krause A, Keiper S, et al. Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight 2021;6:e145994
- Furuhata Y, Nihongaki Y, Sato M, Yoshimoto K. Control of adipogenic differentiation in mesenchymal stem cells via endogenous gene activation using CRISPR-Cas9. ACS Synth Biol 2017;6:2191-2197 https://doi.org/10.1021/acssynbio.7b00246
- Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun 2020;11:5352
- Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013;13:653-658 https://doi.org/10.1016/j.stem.2013.11.002
- Geurts MH, de Poel E, Pleguezuelos-Manzano C, et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance 2021;4:e202000940
- Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018;36:765-771 https://doi.org/10.1038/nbt.4192
- Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018;362:839-842 https://doi.org/10.1126/science.aav4294