DOI QR코드

DOI QR Code

Recent Research Trends in Stem Cells Using CRISPR/Cas-Based Genome Editing Methods

  • Da Eun Yoon (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Hyunji Lee (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Kyoungmi Kim (Department of Biomedical Sciences, Korea University College of Medicine)
  • 투고 : 2023.03.19
  • 심사 : 2023.09.21
  • 발행 : 2024.02.28

초록

The clustered regularly interspaced short palindromic repeats (CRISPR) system, a rapidly advancing genome editing technology, allows DNA alterations into the genome of organisms. Gene editing using the CRISPR system enables more precise and diverse editing, such as single nucleotide conversion, precise knock-in of target sequences or genes, chromosomal rearrangement, or gene disruption by simple cutting. Moreover, CRISPR systems comprising transcriptional activators/repressors can be used for epigenetic regulation without DNA damage. Stem cell DNA engineering based on gene editing tools has enormous potential to provide clues regarding the pathogenesis of diseases and to study the mechanisms and treatments of incurable diseases. Here, we review the latest trends in stem cell research using various CRISPR/Cas technologies and discuss their future prospects in treating various diseases.

키워드

과제정보

Figures were constructed using BioRender.com.

참고문헌

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-821 https://doi.org/10.1126/science.1225829
  2. Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 1994;14:8096-8106
  3. Gallagher DN, Haber JE. Repair of a site-specific DNA cleavage: old-school lessons for Cas9-mediated gene editing. ACS Chem Biol 2018;13:397-405
  4. van den Bosch M, Lohman PH, Pastink A. DNA double-strand break repair by homologous recombination. Biol Chem 2002;383:873-892
  5. Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucleic Acids 2017;7:53-60 https://doi.org/10.1016/j.omtn.2017.02.006
  6. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010;11:181-190 https://doi.org/10.1038/nrg2749
  7. Chavez A, Tuttle M, Pruitt BW, et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016;13:563-567 https://doi.org/10.1038/nmeth.3871
  8. Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 2017;551:464-471 Erratum in: Nature 2018;559:E8
  9. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533:420-424 https://doi.org/10.1038/nature17946
  10. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149-157 https://doi.org/10.1038/s41586-019-1711-4
  11. Fortier LA. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005;34:415-423 https://doi.org/10.1111/j.1532-950X.2005.00063.x
  12. Umar S. Intestinal stem cells. Curr Gastroenterol Rep 2010;12:340-348 https://doi.org/10.1007/s11894-010-0130-3
  13. Dzierzak E, Bigas A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 2018;22:639-651 https://doi.org/10.1016/j.stem.2018.04.015
  14. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676 https://doi.org/10.1016/j.cell.2006.07.024
  15. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012;481:295-305 https://doi.org/10.1038/nature10761
  16. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 2018;200:e00580-17
  17. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013;31:230-232 https://doi.org/10.1038/nbt.2507
  18. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-823 https://doi.org/10.1126/science.1231143
  19. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-826 https://doi.org/10.1126/science.1232033
  20. Guo N, Liu JB, Li W, Ma YS, Fu D. The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res 2022;40:135-152 https://doi.org/10.1016/j.jare.2021.11.018
  21. Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759-771 https://doi.org/10.1016/j.cell.2015.09.038
  22. Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016;532:517-521 https://doi.org/10.1038/nature17945
  23. Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016;353:aaf5573
  24. Szczelkun MD, Tikhomirova MS, Sinkunas T, et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 2014;111:9798-9803 https://doi.org/10.1073/pnas.1402597111
  25. Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014;156:935-949 https://doi.org/10.1016/j.cell.2014.02.001
  26. McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 2008;24:529-538 https://doi.org/10.1016/j.tig.2008.08.007
  27. Farboud B, Jarvis E, Roth TL, et al. Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms. J Vis Exp 2018;(135):57350
  28. Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014;24:1012-1019 https://doi.org/10.1101/gr.171322.113
  29. Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: hopes and challenges. Biomedicines 2018;6:105
  30. Chapman JE, Gillum D, Kiani S. Approaches to reduce CRISPR off-target effects for safer genome editing. Appl Biosaf 2017;22:7-13 https://doi.org/10.1177/1535676017694148
  31. Shen CC, Hsu MN, Chang CW, et al. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res 2019;47:e13
  32. Marino ND, Pinilla-Redondo R, Csorgo B, Bondy-Denomy J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods 2020;17:471-479 https://doi.org/10.1038/s41592-020-0771-6
  33. Pawluk A, Davidson AR, Maxwell KL. Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 2018;16:12-17 https://doi.org/10.1038/nrmicro.2017.120
  34. Zhu Y, Gao A, Zhan Q, et al. Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins. Mol Cell 2019;74:296-309.e7 https://doi.org/10.1016/j.molcel.2019.01.038
  35. Harrington LB, Doxzen KW, Ma E, et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 2017;170:1224-1233.e15 https://doi.org/10.1016/j.cell.2017.07.037
  36. Bondy-Denomy J, Garcia B, Strum S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 2015;526:136-139 https://doi.org/10.1038/nature15254
  37. Brunet E, Jasin M. Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol 2018;1044:15-25 https://doi.org/10.1007/978-981-13-0593-1_2
  38. Rose JC, Popp NA, Richardson CD, et al. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs. Nat Commun 2020;11:2697
  39. Amendola M, Brusson M, Miccio A. CRISPRthripsis: the risk of CRISPR/Cas9-induced chromothripsis in gene therapy. Stem Cells Transl Med 2022;11:1003-1009 https://doi.org/10.1093/stcltm/szac064
  40. Wen W, Zhang XB. CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells. Exp Hematol 2022;110:13-19 https://doi.org/10.1016/j.exphem.2022.03.002
  41. Lee J, Lim K, Kim A, et al. Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nat Commun 2023;14:1786
  42. Thuronyi BW, Koblan LW, Levy JM, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 2019;37:1070-1079 Erratum in: Nat Biotechnol 2019;37:1091
  43. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 2017;35:371-376 https://doi.org/10.1038/nbt.3803
  44. Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity. Sci Adv 2017;3:eaao4774
  45. Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014;42:D980-D985 https://doi.org/10.1093/nar/gkt1113
  46. Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016;44:D862-D868 https://doi.org/10.1093/nar/gkv1222
  47. Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883-891 Erratum in: Nat Biotechnol 2020;38:901
  48. Rothgangl T, Dennis MK, Lin PJC, et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021;39:949-957 https://doi.org/10.1038/s41587-021-00933-4
  49. Tu T, Song Z, Liu X, et al. A precise and efficient adenine base editor. Mol Ther 2022;30:2933-2941 https://doi.org/10.1016/j.ymthe.2022.07.010
  50. Chen L, Zhang S, Xue N, et al. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol 2023;19:101-110 https://doi.org/10.1038/s41589-022-01163-8
  51. Grunewald J, Zhou R, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol 2020;38:861-864 https://doi.org/10.1038/s41587-020-0535-y
  52. Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 2020;38:865-869 Erratum in: Nat Biotechnol 2020;38:901
  53. Zhang X, Zhu B, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 2020;38:856-860 https://doi.org/10.1038/s41587-020-0527-y
  54. Chen L, Park JE, Paa P, et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun 2021;12:1384
  55. Sun N, Zhao D, Li S, Zhang Z, Bi C, Zhang X. Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Mol Ther 2022; 30:2452-2463 https://doi.org/10.1016/j.ymthe.2022.03.023
  56. Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018; 361:1259-1262 https://doi.org/10.1126/science.aas9129
  57. Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 2015;16:257
  58. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018;19:770-788 Erratum in: Nat Rev Genet 2018;19:801
  59. Park SJ, Jeong TY, Shin SK, et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol 2021;22:170
  60. Kweon J, Hwang HY, Ryu H, Jang AH, Kim D, Kim Y. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol Ther 2023;31:249-259 https://doi.org/10.1016/j.ymthe.2022.09.008
  61. Chen PJ, Hussmann JA, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021;184:5635-5652.e29 https://doi.org/10.1016/j.cell.2021.09.018
  62. Nelson JW, Randolph PB, Shen SP, et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2022;40:402-410 Erratum in: Nat Biotechnol 2022;40:432
  63. Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013;154:442-451 https://doi.org/10.1016/j.cell.2013.06.044
  64. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013;152:1173-1183 Erratum in: Cell 2021;184:844
  65. Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159:647-661 https://doi.org/10.1016/j.cell.2014.09.029
  66. Konermann S, Brigham MD, Trevino A, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013;500:472-476 https://doi.org/10.1038/nature12466
  67. Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015;517:583-588 https://doi.org/10.1038/nature14136
  68. Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods 2015;12:326-328 https://doi.org/10.1038/nmeth.3312
  69. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014;159:635-646 https://doi.org/10.1016/j.cell.2014.09.039
  70. Wei R, Yuan F, Wu Y, et al. Construction of a GLI3 compound heterozygous knockout human embryonic stem cell line WAe001-A-20 by CRISPR/Cas9 editing. Stem Cell Res 2018;32:139-144 https://doi.org/10.1016/j.scr.2018.09.010
  71. Wang Z, Cui Y, Shan Y, et al. Generation of a MCPH1 knockout human embryonic stem cell line by CRISPR/Cas9 technology. Stem Cell Res 2020;49:102105
  72. uberbacher C, Obergasteiger J, Volta M, et al. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Res 2019;41:101656
  73. Wu J, Hunt SD, Xue H, Liu Y, Darabi R. Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology. Stem Cell Res 2016;16:220-228 https://doi.org/10.1016/j.scr.2016.01.003
  74. Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020;209:107501 
  75. Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020;11:345
  76. Zhu Z, Verma N, Gonzalez F, Shi ZD, Huangfu D. A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Reports 2015;4: 1103-1111 https://doi.org/10.1016/j.stemcr.2015.04.016
  77. Zhou J, Wang C, Zhang K, et al. Generation of human embryonic stem cell line expressing zsGreen in cholinergic neurons using CRISPR/Cas9 system. Neurochem Res 2016; 41:2065-2074 https://doi.org/10.1007/s11064-016-1918-9
  78. Habib O, Habib G, Hwang GH, Bae S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 2022;50:1187-1197 https://doi.org/10.1093/nar/gkab1295
  79. Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 2014;141:219-223 https://doi.org/10.1242/dev.103341
  80. Park CY, Kim DH, Son JS, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015;17:213-220 https://doi.org/10.1016/j.stem.2015.07.001
  81. Miki T, Vazquez L, Yanuaria L, et al. Induced pluripotent stem cell derivation and ex vivo gene correction using a mucopolysaccharidosis type 1 disease mouse model. Stem Cells Int 2019;2019:6978303
  82. Hagberg B, Aicardi J, Dias K, Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol 1983;14:471-479 https://doi.org/10.1002/ana.410140412
  83. Le TTH, Tran NT, Dao TML, et al. Efficient and precise CRISPR/Cas9-mediated MECP2 modifications in human-induced pluripotent stem cells. Front Genet 2019;10:625
  84. Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron 2018;98:1141-1154.e7 Erratum in: Neuron 2018;98:1294
  85. Yang Y, Zhang X, Yi L, et al. Naive induced pluripotent stem cells generated from β-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med 2016;5:8-19 Erratum in: Stem Cells Transl Med 2016;5:267
  86. Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int 2009;75:1264-1271 https://doi.org/10.1038/ki.2009.32
  87. Esteve J, Blouin JM, Lalanne M, et al. Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem Biophys Res Commun 2019;517:677-683 https://doi.org/10.1016/j.bbrc.2019.07.109
  88. Mykkanen K, Savontaus ML, Juvonen V, et al. Detection of the founder effect in Finnish CADASIL families. Eur J Hum Genet 2004;12:813-819 https://doi.org/10.1038/sj.ejhg.5201221
  89. Vuorio AF, Aalto-Setala K, Koivisto UM, et al. Familial hypercholesterolaemia in Finland: common, rare and mild mutations of the LDL receptor and their clinical consequences. Finnish FH-group. Ann Med 2001;33:410-421 https://doi.org/10.3109/07853890108995954
  90. Jalil S, Keskinen T, Maldonado R, et al. Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Reports 2021;16:3064-3075 https://doi.org/10.1016/j.stemcr.2021.10.017
  91. Chang KH, Huang CY, Ou-Yang CH, et al. In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p.G2019S mutation. Stem Cell Res Ther 2021;12:508
  92. Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv 2021;7:eabg4910
  93. Zhou M, Tang S, Duan N, et al. Targeted-deletion of a tiny sequence via prime editing to restore SMN expression. Int J Mol Sci 2022;23:7941
  94. Luo Y, Xu X, An X, Sun X, Wang S, Zhu D. Targeted inhibition of the miR-199a/214 cluster by CRISPR interference augments the tumor tropism of human induced pluripotent stem cell-derived neural stem cells under hypoxic condition. Stem Cells Int 2016;2016:3598542
  95. Bozdag SC, Yuksel MK, Demirer T. Adult stem cells and medicine. Adv Exp Med Biol. 2018;1079:17-36 https://doi.org/10.1007/5584_2018_184
  96. Brunetti L, Gundry MC, Kitano A, Nakada D, Goodell MA. Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9. J Vis Exp 2018;(134):57278
  97. Gundry MC, Brunetti L, Lin A, et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep 2016;17:1453-1461 https://doi.org/10.1016/j.celrep.2016.09.092
  98. Moore RD, Chaisson RE. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS 1999;13:1933-1942 https://doi.org/10.1097/00002030-199910010-00017
  99. Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 2017;25:1782-1789 https://doi.org/10.1016/j.ymthe.2017.04.027
  100. Xiao Q, Chen S, Wang Q, et al. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4 T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4 T cell enrichment in humanized mice. Retrovirology 2019;16:15 Erratum in: Retrovirology 2019;16:20
  101. Moss AJ. Long QT syndrome. JAMA 2003;289:2041-2044 https://doi.org/10.1001/jama.289.16.2041
  102. Qi T, Wu F, Xie Y, et al. Base editing mediated generation of point mutations into human pluripotent stem cells for modeling disease. Front Cell Dev Biol 2020;8:590581
  103. Wilde AAM, Amin AS. Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol 2018;4:569-579 https://doi.org/10.1016/j.jacep.2018.03.006
  104. Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 2016;539:384-389 https://doi.org/10.1038/nature20134
  105. Zeng J, Wu Y, Ren C, et al. Therapeutic base editing of human hematopoietic stem cells. Nat Med 2020;26:535-541 https://doi.org/10.1038/s41591-020-0790-y
  106. Sangkitporn S, Rerkamnuaychoke B, Sangkitporn S, Mitrakul C, Sutivigit Y. Hb G Makassar (beta 6:Glu-Ala) in a Thai family. J Med Assoc Thai 2002;85:577-582
  107. Chu SH, Packer M, Rees H, et al. Rationally designed base editors for precise editing of the sickle cell disease mutation. CRISPR J 2021;4:169-177  https://doi.org/10.1089/crispr.2020.0144
  108. Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 2021;595:295-302 https://doi.org/10.1038/s41586-021-03609-w
  109. Miller SM, Wang T, Randolph PB, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 2020;38:471-481 https://doi.org/10.1038/s41587-020-0412-8
  110. Escobar H, Krause A, Keiper S, et al. Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight 2021;6:e145994
  111. Furuhata Y, Nihongaki Y, Sato M, Yoshimoto K. Control of adipogenic differentiation in mesenchymal stem cells via endogenous gene activation using CRISPR-Cas9. ACS Synth Biol 2017;6:2191-2197 https://doi.org/10.1021/acssynbio.7b00246
  112. Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun 2020;11:5352
  113. Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013;13:653-658 https://doi.org/10.1016/j.stem.2013.11.002
  114. Geurts MH, de Poel E, Pleguezuelos-Manzano C, et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance 2021;4:e202000940
  115. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018;36:765-771 https://doi.org/10.1038/nbt.4192
  116. Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018;362:839-842  https://doi.org/10.1126/science.aav4294