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Cholangiocarcinoma (CCA) incidence is significantly higher in 
Asian countries (including Korea, China, and Thailand) than 
in other geographical regions, potentially attributed to parasit-
ic infections, notably those related to Clonorchis sinensis. The 
poor CCA prognosis is mostly due to advanced-stage diagnosis 
and the limited effectiveness of available medical interventions, 
including targeted therapy and chemotherapeutics. The gem-
citabine plus cisplatin (GP) regimen has been established as the 
first-line chemotherapy for CCA since the early 2000s. Despite 
high expectations, the addition of nab-paclitaxel to the GP regi-
men failed to demonstrate a significant extension in survival in 
a phase 3 study.1,2 The recent National Comprehensive Cancer 
Network guidelines have included immune checkpoint inhib-

itors (e.g., durvalumab or pembrolizumab) to the GP regimen 
for CCA treatment. However, this approach is reportedly large-
ly ineffective, since survival periods were extended by approx-
imately one month only (D+GP vs. GP, 12.8 vs. 11.5 months; 
P+GP vs. GP, 12.7 vs. 10.9 months).3,4 According to the location 
and growth patterns, CCA comprises intrahepatic, perihilar, 
and extrahepatic subtypes as well as intraductal, ductal, and 
mass-forming types, respectively. These classifications have 
been associated with distinct prognoses and genetic variants. 
Consequently, a better understanding of the unique characteris-
tics of these subtypes, including genetic studies, would be war-
ranted and would enable the pursuit of customized precision 
medicine therapeutics for individual patients, thereby poten-
tially overcoming therapeutic challenges. Pathogenic variants 
of intrahepatic CCA include FGFR2, IDH1/2, EPHA2, BAP1, 
KRAS, SMAD4, ARID1A, GNAS, TP53, BRCA1/2, ERBB2, 
and PIK3CA. In addition, the genetic variants of PRKACA/B, 
ELF3, ARID1A/B, KRAS, SMAD4, GNAS, TP53, BRCA1/2, 
ERBB2, and PIK3CA have been implicated in extrahepatic 
CCA. Furthermore, gallbladder carcinoma (GBC) is associated 
with pathogenic EGFR, ERBB2/3, PTEN, ARID2, MLL2/3, 
TERT, TP53, BRCA1/2, and PIK3CA variants.5 FGFR2 variants 
have been studied extensively in the context of intrahepatic 
CCA, and therapies targeting such genetic changes, including 
pemigatinib and futibatinib, demonstrated promising response 
rates of 35.5% and 42%, respectively, when used as second-line 
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treatments.6,7 

CCA diagnosis is predominantly confirmed via endoscopic 
retrograde cholangiopancreatography (ERCP) or percutaneous 
liver biopsy in advanced stages. The diagnostic technique selec-
tion being influenced by the anatomical location of the tumor. 
The lower sensitivity of the ERCP biopsy led to a growing pref-
erence for fine-needle aspiration (FNA) and fine-needle biopsy 
(FNB), facilitated by endoscopic ultrasound (EUS). A recent 
meta-analysis revealed ERCP and EUS-FNA sensitivity, speci-
ficity, and diagnostic accuracy, in the context of malignant bili-
ary strictures, as 49% and 75%, 96.3% and 100%, and 60.6% and 
79%, respectively.8 Comprehensive genomic profiling (CGP) 
requires higher tissue quantity than that routinely required for 
pathological diagnosis. Therefore, percutaneous liver biopsy 
or surgical biopsy are commonly employed to obtain sufficient 
CGP material. However, such procedures are more invasive and 
carry a higher complication risk than EUS-FNA or EUS-FNB. 
Therefore, the latter procedure could be considered a chosen 
diagnostic technique if an acceptable diagnostic rate and CGP 
adequacy could be irrefutably demonstrated. Several studies 
using CCA tissue for CGP harvested via EUS-FNB described 
pathogenic variant detection rates of 0% to 30%. However, the 
tissue quantity adequacy rates remained undocumented in 
these reports.5 These studies were predominantly limited by 
patient selection, with most enrolled patients suffering from in-
trahepatic CCA or GBC and very few cases representing ductal 
infiltration and extrahepatic CCA. Notably, a study evaluating 
EUS-FNA efficacy in pancreatic cancer reported CGP adequa-
cy rates of 72.5%, 53.5%, and 33.3% for 19-G-FNB, 22-G-FNB, 
and 22-G-FNA, respectively.9 This result implies that EUS-FNA 
could lead to positive results with minimal complications com-
pared to traditional laparoscopic biopsy in pancreatic cancer 
diagnosis. These findings imply that transitioning from percu-
taneous methods to EUS-FNA could be advantageous for CCA 
diagnosis, highlighting the potential benefits of this approach 
in obtaining tissue samples for genetic analysis with minimal 
complications. 

In the current issue of Clinical Endoscopy, the clinical utility 
of EUS tissue acquisition for CGP in patients with biliary tract 
cancer, especially those with intrahepatic CCA,10 is highlighted 
by including a larger cohort of 94 patients, surpassing the num-
ber of participants in previous articles with similar objectives. 
Factors positively associated with sample adequacy included the 
use of a larger needle gauge (19-G vs. 22-G, 93.1% vs. 54.5%; 

p=0.013), FNB needle type choice (FNA vs. FNB, 37.5% vs. 
83.7%; p=0.013), primary lesion presence instead of metastasis 
(p=0.015), target size >30 mm (p<0.001), and performing >3 
punctures (p=0.016). 

This study describes the genomic analysis of tissue samples 
obtained via EUS-FNB to evaluate eight critical therapeutic mo-
lecular markers as follows: IDH1 variants (involved in metabolic 
pathways)11; FGFR2 fusions (keys to cell growth and angiogen-
esis)12; neurotrophic receptor tyrosine kinase (NTRK) fusions 
(important for neural development and function)13; BRAF 
V600E variants (keys to the MAPK signaling pathway)14; recep-
tor tyrosine-protein kinase erbB-2 (ERBB2) amplifications (as-
sociated with cell proliferation and survival)15; rearrangements 
during transfection (RET) fusions (impacting cell growth and 
differentiation)16; microsatellite instability-high status (indica-
tive of a defective DNA mismatch repair system)17; and tumor 
mutational burden (TMB, reflecting the number of mutations 
carried by tumor cells).18 FGFR2 fusions were detected in 12.9% 
of intrahepatic CCA, making it the most prevalent variant. 
IDH1 variants were the second most common genetic cause 
of intrahepatic CCA (9.7%). While GBC frequently (21.4%) 
exhibited ERBB2 amplification as the primary alteration, TMB-
high status (17.9%) was the second most common variation. 
Furthermore, the pathogenic variant detection rate in intra-
hepatic CCA and GBC was approximately 30%, being notably 
lower than that in extrahepatic CCA (0%). KRAS and TP53 
status evaluations in intrahepatic CCA (32.3% vs.32.3%), ex-
trahepatic CCA (35.7% vs.71.4%), and GBC (7.1% vs.53.6%) 
revealed significant differences with a particularly lower KRAS 
variant detection rate in GBC compared to that in CCA (7% vs. 
33%, p=0.011).  

This study was limited by the fact that most of the enrolled 
patients displayed intrahepatic CCA and GBC. In addition, only 
four patients underwent targeted assessment of the bile duct 
using EUS-FNA/B, with adequate tissue collection in 50% of 
these cases. Consequently, this study might not have fully cap-
tured the specificity of ductal infiltration types and extrahepatic 
CCA within the CCA category. In contrast, this study highlights 
successful CGP performance in intrahepatic and mass-forming 
CCA using EUS-FNA/B. Furthermore, large-scale studies as-
sessing CGP feasibility in patients with ductal infiltration types 
undergoing EUS-FNA/B are crucial for developing diagnostic 
strategies to combat CCA. 
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