DOI QR코드

DOI QR Code

Computer-aided polyp characterization in colonoscopy: sufficient performance or not?

  • Natalie Halvorsen (Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo) ;
  • Yuichi Mori (Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo)
  • Received : 2023.03.23
  • Accepted : 2023.05.24
  • Published : 2024.01.30

Abstract

Computer-assisted polyp characterization (computer-aided diagnosis, CADx) facilitates optical diagnosis during colonoscopy. Several studies have demonstrated high sensitivity and specificity of CADx tools in identifying neoplastic changes in colorectal polyps. To implement CADx tools in colonoscopy, there is a need to confirm whether these tools satisfy the threshold levels that are required to introduce optical diagnosis strategies such as "diagnose-and-leave," "resect-and-discard" or "DISCARD-lite." In this article, we review the available data from prospective trials regarding the effect of multiple CADx tools and discuss whether they meet these thresholds.

Keywords

References

  1. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019;16:713-732.  https://doi.org/10.1038/s41575-019-0189-8
  2. Vleugels JL, Greuter MJ, Hazewinkel Y, et al. Implementation of an optical diagnosis strategy saves costs and does not impair clinical outcomes of a fecal immunochemical test-based colorectal cancer screening program. Endosc Int Open 2017;5:E1197-E1207.  https://doi.org/10.1055/s-0043-113565
  3. Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol 2010;8:865-869.  https://doi.org/10.1016/j.cgh.2010.05.018
  4. Kudo S, Hirota S, Nakajima T, et al. Colorectal tumours and pit pattern. J Clin Pathol 1994;47:880-885.  https://doi.org/10.1136/jcp.47.10.880
  5. Rees CJ, Rajasekhar PT, Wilson A, et al. Narrow band imaging optical diagnosis of small colorectal polyps in routine clinical practice: the Detect Inspect Characterise Resect and Discard 2 (DISCARD 2) study. Gut 2017;66:887-895.  https://doi.org/10.1136/gutjnl-2015-310584
  6. Houwen BB, Hassan C, Coupe VM, et al. Definition of competence standards for optical diagnosis of diminutive colorectal polyps: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022;54:88-99.  https://doi.org/10.1055/a-1689-5130
  7. Rex DK, Kahi C, O'Brien M, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 2011;73:419-422.  https://doi.org/10.1016/j.gie.2011.01.023
  8. Atkinson NS, East JE. Optical biopsy and sessile serrated polyps: is DISCARD dead? Long live DISCARD-lite! Gastrointest Endosc 2015;82:118-121.  https://doi.org/10.1016/j.gie.2015.01.059
  9. Willems P, Djinbachian R, Ditisheim S, et al. Uptake and barriers for implementation of the resect and discard strategy: an international survey. Endosc Int Open 2020;8:E684-E692.  https://doi.org/10.1055/a-1132-5371
  10. Barua I, Wieszczy P, Kudo SE, et al. Real-time artificial intelligence-based optical diagnosis of neoplastic polyps during colonoscopy. NEJM Evid 2022;1:EVIDoa2200003. 
  11. Chan HP, Hadjiiski LM, Samala RK. Computer-aided diagnosis in the era of deep learning. Med Phys 2020;47:e218-e227.  https://doi.org/10.1002/mp.13764
  12. Rondonotti E, Hassan C, Tamanini G, et al. Artificial intelligence-assisted optical diagnosis for the resect-and-discard strategy in clinical practice: the Artificial intelligence BLI Characterization (ABC) study. Endoscopy 2023;55:14-22.  https://doi.org/10.1055/a-1852-0330
  13. Aihara H, Saito S, Inomata H, et al. Computer-aided diagnosis of neoplastic colorectal lesions using 'real-time' numerical color analysis during autofluorescence endoscopy. Eur J Gastroenterol Hepatol 2013;25:488-494.  https://doi.org/10.1097/MEG.0b013e32835c6d9a
  14. Kuiper T, Alderlieste YA, Tytgat KM, et al. Automatic optical diagnosis of small colorectal lesions by laser-induced autofluorescence. Endoscopy 2015;47:56-62.  https://doi.org/10.1055/s-0034-1378112
  15. Rath T, Tontini GE, Vieth M, et al. In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy. Endoscopy 2016;48:557-562.  https://doi.org/10.1055/s-0042-102251
  16. Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc 2016;83:643-649.  https://doi.org/10.1016/j.gie.2015.08.004
  17. Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med 2018;169:357-366.  https://doi.org/10.7326/M18-0249
  18. Horiuchi H, Tamai N, Kamba S, et al. Real-time computer-aided diagnosis of diminutive rectosigmoid polyps using an auto-fluorescence imaging system and novel color intensity analysis software. Scand J Gastroenterol 2019;54:800-805.  https://doi.org/10.1080/00365521.2019.1627407
  19. Minegishi Y, Kudo SE, Miyata Y, et al. Comprehensive diagnostic performance of real-time characterization of colorectal lesions using an artificial intelligence-assisted system: a prospective study. Gastroenterology 2022;163:323-325.  https://doi.org/10.1053/j.gastro.2022.03.053
  20. Gupta S, Lieberman D, Anderson JC, et al. Recommendations for follow-up after colonoscopy and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2020;158:1131-1153.  https://doi.org/10.1053/j.gastro.2019.10.026
  21. Hassan C, Antonelli G, Dumonceau JM, et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Update 2020. Endoscopy 2020;52:687-700.  https://doi.org/10.1055/a-1185-3109
  22. Weigt J, Repici A, Antonelli G, et al. Performance of a new integrated computer-assisted system (CADe/CADx) for detection and characterization of colorectal neoplasia. Endoscopy 2022;54:180-184. https://doi.org/10.1055/a-1372-0419