DOI QR코드

DOI QR Code

Intraoral ageing of aligners and attachments: Adverse effects on clinical efficiency and release of biologically-active compounds

  • Theodore Eliades (Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich) ;
  • George Eliades (Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens)
  • 투고 : 2024.05.07
  • 심사 : 2024.05.14
  • 발행 : 2024.07.25

초록

The clinical application of aligners is accompanied by the ageing of the polymer appliances and the attachments used, which may result in inefficiency in reaching the predicted range of tooth movement, and release of compounds and microplastics in the oral cavity as a result of the friction, wear and attrition of the aligner and composite attachment. The purpose of this review is to present the mechanism and effects of in vivo ageing; describe the hydrolytic degradation of aligners and enzymatic degradation of composite attachments; examine the ageing pattern of aligners in vivo, under actual clinical scenarios; and identify a link to the discrepancy between predicted and actual clinical outcome. Lastly, strategies to deal with three potentially critical issues associated with the use of aligners, namely the necessity of weekly renewal, the dissimilar mechanical properties of aligner and attachment resulting in wear and plastic deformation of the aligner, and the development of integuments and biofilms with microbial colonization of the appliance, are discussed.

키워드

과제정보

Parts of the text of the first section and the Figure 1 of this article derive from the chapter Eliades G, Eliades T, Vavuranakis M. General aspects of biomaterial surface alterations following exposure to biologic fluids. In: Eliades G, Eliades T, Brantley WA, Watts DC, eds. Dental materials in vivo: aging and related phenomena. Chicago: Quintessence Publishing Co.; 2003. p. 3-22 and are reproduced with permission.

참고문헌

  1. Papageorgiou SN, Koletsi D, Iliadi A, Peltomaki T, Eliades T. Treatment outcome with orthodontic aligners and fixed appliances: a systematic review with meta-analyses. Eur J Orthod 2020;42:331-43. https://doi.org/10.1093/ejo/cjz094
  2. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Arends J, Darius PL, et al. The influence of surface free-energy on planimetric plaque growth in man. J Dent Res 1989;68:796-9. https://doi.org/10.1177/00220345890680050801
  3. Merrill EW. Distinctions and correspondences among surfaces contacting blood. Ann N Y Acad Sci 1987;516:196-203. https://doi.org/10.1111/j.1749-6632.1987.tb33041.x
  4. Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. Flow patterns in vessels of simple and complex geometries. Ann N Y Acad Sci 1987;516:422-41. https://doi.org/10.1111/j.1749-6632.1987.tb33063.x
  5. Kasemo B, Lausmaa J. The biomaterial-tissue interface and its analogues in surface science and technology. In: Davies JE, ed. Bone-bio material interface. Toronto: University of Toronto Press; 1991. p. 19-32. https://doi.org/10.3138/9781442671508-005
  6. Eliades G, Eliades T, Vavuranakis M. General aspects of biomaterial surface alterations following exposure to biologic fluids. In: Eliades G, Eliades T, Brantley WA, Watts DC, eds. Dental materials in vivo: aging and related phenomena. Chicago: Quintessence Publishing Co.; 2003. p. 3-22. https://www.quintessence-publishing.com/gbr/en/product/dental-materials-in-vivo-aging-and-related-phenomena
  7. Israelachvili J. Intermolecular and surface forces. 3rd ed. San Diego: Academic Press; 2011. p. 275-86. https://doi.org/10.1016/C2009-0-21560-1
  8. Brash JL. Studies of protein adsorption relevant to blood compatible materials. In: Missirlis YF, Lemm W, eds. Modern aspects of protein adsorption on biomaterials. Dordrecht: Kluwer Academic Press; 1991. p. 39-47. https://doi.org/10.1007/978-94-011-3752-2_5
  9. Andrade JD, Hlady V. Plasma protein adsorption: the big twelve. Ann N Y Acad Sci 1987;516:158-72. https://doi.org/10.1111/j.1749-6632.1987.tb33038.x
  10. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 2000;79:21-7. https://doi.org/10.1177/00220345000790010201
  11. Zinelis S, Polychronis G, Papadopoulos F, Kokkinos C, Economou A, Panayi N, et al. Mechanical and electrochemical characterization of 3D printed orthodontic metallic appliances after in vivo ageing. Dent Mater 2022;38:1721-7. https://doi.org/10.1016/j.dental.2022.09.002
  12. Papadopoulou AK, Cantele A, Polychronis G, Zinelis S, Eliades T. Changes in roughness and mechanical properties of Invisalign®  appliances after oneand two-weeks use. Materials (Basel) 2019;12:2406. https://doi.org/10.3390/ma12152406
  13. Schatzle M, Zinelis S, Markic G, Eliades G, Eliades T. Structural, morphological, compositional, and mechanical changes of palatal implants after use: a retrieval analysis. Eur J Orthod 2017;39:579-85. https://doi.org/10.1093/ejo/cjx001
  14. Gugger J, Pandis N, Zinelis S, Patcas R, Eliades G, Eliades T. Retrieval analysis of lingual fixed retainer adhesives. Am J Orthod Dentofacial Orthop 2016;150:575-84. https://doi.org/10.1016/j.ajodo.2016.06.012
  15. Hersche S, Sifakakis I, Zinelis S, Eliades T. Elemental, microstructural, and mechanical characterization of high gold orthodontic brackets after intraoral aging. Biomed Tech (Berl) 2017;62:97-102. https://doi.org/10.1515/bmt-2015-0205
  16. Soteriou D, Ntasi A, Papagiannoulis L, Eliades T, Zinelis S. Decomposition of Ag-based soldering alloys used in space maintainers after intra-oral exposure. A retrieval analysis study. Acta Odontol Scand 2014;72:130-8. https://doi.org/10.3109/00016357.2013.812745
  17. Eliades T, Zinelis S, Papadopoulos MA, Eliades G. Characterization of retrieved orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop 2009;135:10.e1-7; discussion 10-1. https://doi.org/10.1016/j.ajodo.2008.06.019
  18. Zinelis S, Eliades T, Dimitrakopoulos I, Silikas N, Eliades G. Surface characterization and force relaxation of retrieved silk sutures. J Biomed Mater Res B Appl Biomater 2009;89:551-7. https://doi.org/10.1002/jbm.b.31248
  19. Schuster S, Eliades G, Zinelis S, Eliades T, Bradley TG. Structural conformation and leaching from in vitro aged and retrieved Invisalign appliances. Am J Orthod Dentofacial Orthop 2004;126:725-8. https://doi.org/10.1016/j.ajodo.2004.04.021
  20. Eliades T, Papadopulos JS, Eliades G, Silikas N, Watts DC. Multi-technique characterization of retrieved bone cement from revised total hip arthroplasties. J Mater Sci Mater Med 2003;14:967-72. https://doi.org/10.1023/a:1026350616079
  21. Eliades T, Athanasiou AE. In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod 2002;72:222-37. https://pubmed.ncbi.nlm.nih.gov/12071606/
  22. Eliades T, Eliades G, Watts DC. Intraoral aging of the inner headgear component: a potential biocompatibility concern? Am J Orthod Dentofacial Orthop 2001;119:300-6. https://doi.org/10.1067/mod.2001.111402
  23. Eliades T, Eliades G, Athanasiou AE, Bradley TG. Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod 2000;22:317-26. https://doi.org/10.1093/ejo/22.3.317
  24. Eliades T, Eliades G, Watts DC. Structural conformation of in vitro and in vivo aged orthodontic elastomeric modules. Eur J Orthod 1999;21:649-58. https://doi.org/10.1093/ejo/21.6.649
  25. Magnissalis EA, Eliades G, Eliades T. Multitechnique characterization of articular surfaces of retrieved ultrahigh molecular weight polyethylene acetabular sockets. J Biomed Mater Res 1999;48:365-73. https://doi.org/10.1002/(sici)1097-4636(1999)48:3<365::aid-jbm22>3.0.co;2-t
  26. Vassilakos N. Some biophysical aspects of salivary film formation. Studies of salivary adsorption at solid/liquid and air/liquid interfaces [PhD dissertation]. Lund: Lund University; 1992.
  27. Embery G, Hogg SD, Heaney TG, Stanbuty JB, Green RDJ. Some considerations on dental pellicle formation and early bacterial colonization: the role of high and low molecular weight proteins of the major and minor salivary glands. In: ten Cate JM, Leach SA, Arends J, eds. Bacterial adhesion and preventive dentistry. Oxford: IRL Press; 1984. p. 73-84.
  28. Busscher HJ, van der Mei HC. Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 1997;11:24-32. https://doi.org/10.1177/08959374970110011301
  29. Christersson CE, Dunford RG, Glantz PO, Baier RE. Effect of critical surface tension on retention of oral microorganisms. Scand J Dent Res 1989;97:247-56. https://doi.org/10.1111/j.1600-0722.1989.tb01609.x
  30. Bowden GH, Li YH. Nutritional influences on biofilm development. Adv Dent Res 1997;11:81-99. https://doi.org/10.1177/08959374970110012101
  31. Vasin SL, Rosanova IB, Sevastianov VI. The role of proteins in the nucleation and formation of calcium-containing deposits on biomaterial surfaces. J Biomed Mater Res 1998;39:491-7. https://doi.org/10.1002/(sici)1097-4636(19980305)39:3<491::aid-jbm21>3.0.co;2-c
  32. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 1990;17:138-44. https://doi.org/10.1111/j.1600-051x.1990.tb01077.x
  33. Yamauchi M, Yamamoto K, Wakabayashi M, Kawano J. In vitro adherence of microorganisms to denture base resin with different surface texture. Dent Mater J 1990;9:19-24. https://doi.org/10.4012/dmj.9.19
  34. Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP. In vivo early human dental plaque formation on different supporting substances. A scanning electron microscopic and bacteriological study. Clin Oral Implants Res 1991;2:38-46. https://doi.org/10.1034/j.1600-0501.1991.020105.x
  35. Hannig M. Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci 1999;107:55-64. https://doi.org/10.1046/j.0909-8836.1999.eos107109.x
  36. Yao Y, Grogan J, Zehnder M, Lendenmann U, Nam B, Wu Z, et al. Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch Oral Biol 2001;46:293-303. https://doi.org/10.1016/s0003-9969(00)00134-5
  37. Possart W, Zimmer B. Water in polyurethane networks: physical and chemical ageing effects and mechanical parameters. Contin Mech Thermodyn 2024;36:261-87. https://doi.org/10.1007/s00161-022-01082-y 
  38. Kozakiewicz J, Rokicki G, Przybylski J, Sylwestrzak K, Parzuchowski PG, Tomczyk KM. Studies of the hydrolytic stability of poly(urethane-urea) elastomers synthesized from oligocarbonate diols. Polym Degrad Stab 2010;95:2413-20. https://doi.org/10.1016/j.polymdegradstab.2010.08.017
  39. Arhant M, Le Gall M, Le Gac PY, Davies P. Impact of hydrolytic degradation on mechanical properties of PET- towards an understanding of microplastics formation. Polym Degrad Stab 2019;161:175-82. https://doi.org/10.1016/j.polymdegradstab.2019.01.021
  40. Shokati B, Tam LE, Santerre JP, Finer Y. Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface. J Biomed Mater Res B Appl Biomater 2010;94:230-7. https://doi.org/10.1002/jbm.b.31645
  41. Finer Y, Jaffer F, Santerre JP. Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials 2004;25:1787-93. https://doi.org/10.1016/j.biomaterials.2003.08.029
  42. Marashdeh MQ, Gitalis R, Levesque C, Finer Y. Enterococcus faecalis hydrolyzes dental resin composites and adhesives. J Endod 2018;44:609-13. https://doi.org/10.1016/j.joen.2017.12.014
  43. Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res 2013;92:989-94. https://doi.org/10.1177/0022034513504436
  44. Nedeljkovic I, De Munck J, Ungureanu AA, Slomka V, Bartic C, Vananroye A, et al. Biofilm-induced changes to the composite surface. J Dent 2017;63:36-43. https://doi.org/10.1016/j.jdent.2017.05.015
  45. Rios-Madrigal AM, Orea-Vega DC, Vega-Gonzalez M, Espinosa-Cristobal LF, Arenas-Arrocena MC, Castro-Ruiz JE, et al. Effect of Streptococcus mutans on surface-topography, microhardness, and mechanical properties of contemporary resin composites. J Appl Biomater Funct Mater 2021;19:22808000211065260. https://doi.org/10.1177/22808000211065260
  46. Gitalis R, Zhou L, Marashdeh MQ, Sun C, Glogauer M, Finer Y. Human neutrophils degrade methacrylate resin composites and tooth dentin. Acta Biomater 2019;88:325-31. https://doi.org/10.1016/j.actbio.2019.02.033
  47. Ahmadieh S, Kim HW, Weintraub NL. Potential role of perivascular adipose tissue in modulating atherosclerosis. Clin Sci (Lond) 2020;134:3-13. https://doi.org/10.1042/CS20190577
  48. Zhu X, Wang C, Duan X, Liang B, Genbo Xu E, Huang Z. Micro- and nanoplastics: a new cardiovascular risk factor? Environ Int 2023;171:107662. https://doi.org/10.1016/j.envint.2022.107662
  49. Marfella R, Prattichizzo F, Sardu C, Fulgenzi G, Graciotti L, Spadoni T, et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N Engl J Med 2024;390:900-10. https://doi.org/10.1056/NEJMoa2309822
  50. Quinzi V, Orilisi G, Vitiello F, Notarstefano V, Marzo G, Orsini G. A spectroscopic study on orthodontic aligners: first evidence of secondary microplastic detachment after seven days of artificial saliva exposure. Sci Total Environ 2023;866:161356. https://doi.org/10.1016/j.scitotenv.2022.161356