DOI QR코드

DOI QR Code

A parametric investigation on seismic performance of ageing Sarıyar dam

  • Ahmad Yamin Rasa (Department of Civil Engineering, Engineering Faculty, Ataturk University) ;
  • Ahmet Budak (Department of Civil Engineering, Engineering Faculty, Ataturk University)
  • Received : 2024.02.04
  • Accepted : 2024.06.28
  • Published : 2024.07.25

Abstract

The assessment of seismic behavior and seismic performance of ageing Sarıyar concrete gravity dam constructed on Sakarya River in Türkiye is the main focus of this paper. For this purpose, the impact of sediment domain, ageing of concrete material under the impact of chemical and mechanical actions, and dam-water-sediment interaction are included in the two-dimensional (2D) finite element (FE) model developed in FORTRAN 90 environment. In the FE model, the dam and age dependent sediment domains are modeled by solid elements, while reservoir domain is modeled by Lagrangian fluid elements. The radiation of reflected waves to the unbounded water domain is modeled by infinite Lagrangian fluid elements, while unbounded sediment domain is modeled by infinite solid elements. The coupled system was assumed to be under the simultaneous impact of Vertical (V) and Horizontal (H) ingredients of 1976 Koyna earthquake and the coupled system was analyzed in Laplace domain by direct method. Due to the deterioration of the concrete, the H and V displacement responses together with the fundamental period of the body, elongate throughout the lifetime and this reduce the seismic safety of the dam. It was deduced that the ageing dam body will not experience major damages under the Koyna earthquake both at the earlier and later ages. Furthermore, at the heel of the dam, the hydrodynamic pressure responses are decreased by rising the sediment domain depth.

Keywords

Acknowledgement

The research described in this paper was not financially supported by any organization.

References

  1. Akkose, M. and Simsek, E. (2010), "Non-linear seismic response of concrete gravity dams to near-fault ground motions including dam-water-sediment-foundation interaction", Appl. Math. Model., 34(11), 3685-3700. https://doi.org/10.1016/j.apm.2010.03.019.
  2. Ardebili, M.A. and Mirzabozorg, H. (2012), "Effects of near-fault ground motions in seismic performance evaluation of a symmetric arch dam", Soil Mech. Found. Eng., 49(5), 192-199. https://doi.org/10.1007/s11204-012-9189-1.
  3. Azizan, N.Z.N., Mandal, A., Majid, T.A., Maity, D. and Nazri, F.M. (2017), "Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction", Struct. Eng. Mech., 64(6), 793-802. https://doi.org/10.12989/sem.2017.64.6.793.
  4. Bayraktar, A., Turker, T., Akkose, M. and Ates, S. (2010), "The effect of reservoir length on seismic performance of gravity dams to near-and far-fault ground motions", Nat. Hazard., 52(2), 257-275. https://doi.org/10.1007/s11069-009-9368-1.
  5. Bellego, C.L., Gerard, B. and Pijaudier-Cabot, G. (2000), "Chemo-mechanical effects in mortar beams subjected to water hydrolysis", J. Eng. Mech., 126(3), 266-272.
  6. Chen, D.H., Yang, Z.H., Wang, M. and Xie, J.H. (2019), "Seismic performance and failure modes of the Jin'anqiao concrete gravity dam based on incremental dynamic analysis", Eng. Fail. Anal., 100, 227-244. https://doi.org/10.1016/j.engfailanal.2019.02.018.
  7. Chopra, A.K. and Chakrabarti, P. (1973), "The Koyna earthquake and the damage to Koyna Dam", Bull. Seismol. Soc. Am., 63(2), 381-397. https://doi.org/10.1785/BSSA0630020381.
  8. Dsi (1991), "Turkiye'deki Barajlar, Ankara".
  9. Durbin, F. (1974), "Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method", Comput. J., 17(4), 371-376. https://doi.org/10.1093/comjnl/17.4.371.
  10. Ghanaat, Y. (2004), "Failure modes approach to safety evaluation of dams", 13th World Conference on Earthquake Engineering, Vancouver, Canada.
  11. Gogoi, I. and Maity, D. (2007), "Influence of sediment layers on dynamic behavior of aged concrete dams", J. Eng. Mech., 133(4), 400-413. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(400).
  12. Gorai, S. and Maity, D. (2019), "Seismic response of concrete gravity dams under near field and far field ground motions", Eng. Struct., 196, 109292. https://doi.org/10.1016/j.engstruct.2019.109292.
  13. Gorai, S. and Maity, D. (2021), "Numerical investigation on seismic behaviour of aged concrete gravity dams to near source and far source ground motions", Nat. Hazard., 105(1), 943-966. https://doi.org/10.1007/s11069-020-04344-7.
  14. Grimal, E., Sellier, A., Multon, S., Le Pape, Y. and Bourdarot, E. (2010), "Concrete modelling for expertise of structures affected by alkali aggregate reaction", Cement Concrete Res., 40(4), 502-507. https://doi.org/10.1016/j.cemconres.2009.09.007.
  15. Oluokun, F.A., Burdette, E.G. and Deatherage, J.H. (1991), "Splitting tensile strength and compressive strength relationships at early ages", Mater. J., 88(2), 115-121.
  16. Pan, J., Xu, Y., Jin, F. and Zhang, C. (2014), "A unified approach for long-term behavior and seismic response of AAR-affected concrete dams", Soil Dyn. Earthq. Eng., 63, 193-202. https://doi.org/10.1016/j.soildyn.2014.03.018.
  17. Rasa, A.Y. (2017), "Cok katli yapilarin gecici titresimlerinin durum-uzayi yaklasimi ile incelenmesi ve modlarin birlestirilmesi yontemiyle bir karsilastirma", MSc Thesis, Ataturk University.
  18. Rasa, A.Y. and Budak, A. (2021), "Static and dynamic investigation of structure-foundation-reservoir problem utilizing Finite Element Method", PACE 2021, Ataturk University, Erzurum, Turkiye.
  19. Rasa, A.Y. and Ozyazicioglu, M.H. (2021), "Determination of the exact mode frequencies of multi-storey structures by state-space method and a comparison with mode superposition method", Chall. J. Struct. Mech., 7(1), 1-10. https://doi.org/10.20528/cjsmec.2021.01.001.
  20. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2022), "An efficient finite element model for dynamic analysis of gravity damreservoir-foundation interaction problems", Lat. Am. J. Solid. Struct., 19(6), e459. https://doi.org/10.1590/1679-78257178.
  21. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2023a), "Concrete ageing effect on the dynamic response of machine foundations considering soil-structure interaction", J. Vib. Eng. Technol., 12(3), 3417-3429. https://doi.org/10.1007/s42417-023-01055-8.
  22. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2023b), "Concrete deterioration effects on dynamic behavior of gravity dam-reservoir interaction problems", J. Vib. Eng. Technol., 12(1), 259-278. https://doi.org/10.1007/s42417-022-00842-z.
  23. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2023c), "Seismic performance evaluation of concrete gravity dams using an efficient finite element model", J. Vib. Eng. Technol., 12(2), 2595-2614. https://doi.org/10.1007/s42417-023-01002-7.
  24. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2024), "The influence of concrete degradation on seismic performance of gravity dams", Earthq. Struct., 26(1), 59. https://doi.org/10.12989/eas.2024.26.1.059.
  25. Sun, B., Deng, M., Zhang, S., Wang, C. and Du, M. (2022), "Seismic performance assessment of high asphalt concrete core rockfill dam considering shorter duration and longer duration", Struct., 39, 1204-1217. https://doi.org/10.1016/j.istruc.2022.03.040.
  26. Usace (2003), "Time-history dynamic analysis of concrete hydraulic structures", United States Army Crops of Engineers (USACE), Washington, USA.
  27. Wang, C., Zhang, H., Zhang, Y., Guo, L., Wang, Y. and Thira Htun, T.T. (2021), "Influences on the seismic response of a gravity dam with different foundation and reservoir modeling assumptions", Water, 13(21). https://doi.org/10.3390/w13213072.
  28. Wang, G., Wang, Y., Zhou, W. and Zhou, C. (2015), "Integrated duration effects on seismic performance of concrete gravity dams using linear and nonlinear evaluation methods", Soil Dyn. Earthq. Eng., 79, 223-236. https://doi.org/10.1016/j.soildyn.2015.09.020.
  29. Wang, G., Zhang, S., Wang, C. and Yu, M. (2014), "Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions", Nat. Hazard., 72(2), 651-674. https://doi.org/10.1007/s11069-013-1028-9.
  30. Yerli, H.R., Temel, B. and Kiral, E. (1998), "Transient infinite elements for 2D soil-structure interaction analysis", J. Geotech. Geoenviron. Eng., 124(10), 976-988. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(976).