DOI QR코드

DOI QR Code

Production of Self-cleaning Fabrics Using Ag-doped TiO2 and Silane Polymer

Ag 도핑 TiO2와 실란 고분자를 이용한 셀프클리닝 섬유의 제조

  • Jeongmi Kwak (Department of Textile System Engineering, Kyungpook National University) ;
  • Yejin Mun (Department of Textile System Engineering, Kyungpook National University) ;
  • Gangrim Park (Department of Textile System Engineering, Kyungpook National University) ;
  • Minji Park (Department of Textile System Engineering, Kyungpook National University) ;
  • Hyungyu Park (Korea Textile Development Institute) ;
  • Jin-Seok Bae (Department of Textile System Engineering, Kyungpook National University)
  • 곽정미 (경북대학교 공과대학 섬유시스템공학과) ;
  • 문예진 (경북대학교 공과대학 섬유시스템공학과) ;
  • 박강림 (경북대학교 공과대학 섬유시스템공학과) ;
  • 박민지 (경북대학교 공과대학 섬유시스템공학과) ;
  • 박현규 (한국섬유개발연구원) ;
  • 배진석 (경북대학교 공과대학 섬유시스템공학과)
  • Received : 2024.06.03
  • Accepted : 2024.06.23
  • Published : 2024.06.30

Abstract

In this study, visible light responded photo catalysts and silane polymers were applied to PET fabrics to occur photoreaction and super hydrophobic property. First, TiO2 doped with Ag metal ions was prepared, and the Ag-doped TiO2 was combined with AgI, WO3, and ZnO photocatalysts. Because photodegradation properties are improved by complexing photocatalysts. And they were treated on PET fabrics to occur a self-cleaning function. Ag ions reduce the bandgap energy of TiO2 so that it exhibits excellent photodegradation under visible light. In addition, WO3, ZnO, and AgI have improved electron mobility through synergy with Ag ions present in the metal-doped photocatalyst. In addition, by applying a silane polymer to PET fabrics, super hydrophobic properties are realized on the surface of fiber. SEM, EDS, and XRD were used to evaluate the properties and performance of the visible light responsive photocatalysts. Contact angles were measured to evaluate the properties of the silane-treated fabric surface. As a result, PET fabric realizes excellent initial photodecomposition rate that decompose more than 90% of Methylene blue in 4 hours, and super hydrophobic property of contact angle 165 °. If there are further studies, the possibility of self-cleaning functional fibers will be high.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2022M3C1C5A01094133)과 2024년도 정부(산업통산자원부)의 재원으로 한국산업기술진흥원의 지원(P0012770, 2024년 산업혁신인재성장지원사업)을 받아 수행된 연구임.

References

  1. W. S. Tung and W. A. Daoud, "Self-cleaning Fibers via Nanotechnology: A Virtual Reality", J. Mater. Chem., 2011, 21, 7858-7869. https://doi.org/10.1039/c0jm03856c
  2. X. Jiang, X. Tian, J. Gu, D. Huang, and Y. Yang, "Cotton Fabric Coated with Nano TiO2-acrylate Copolymer for Photocatalytic Self-cleaning by In-situ Suspension Polymerization", Appl. Surface Sci., 2011, 257, 8451-8456. https://doi.org/10.1016/j.apsusc.2011.04.128
  3. S. P. Dalawai, M. A. S. Aly, S. S. Latthe, R. Xing, R. S. Sutar, S. Nagappan, C.-S. Ha, K. K. Sadasivuni, and S. Liu, "Recent Advances in Durability of Superhydrophobic Self-cleaning Technology, a Critical Review", Prog. Org. Coat., 2020, 138, 105381.
  4. D. Tekin, D. Birhan, and H. Kiziltas, "Thermal, Photocatalytic, and Antibacterial Properties of Calcinated Nano-TiO2/polymer Composites", Mater. Chem. Phys., 2020, 251, 123067.
  5. M. Montazer and S. Seifollahzadeh, "TiO2 Treated Textile Through Enzymatic Pretreatment", Photochem. Photobiol., 2011, 87, 877-883. https://doi.org/10.1111/j.1751-1097.2011.00917.x
  6. Y. Y. Gurkan, N. Turkten, A. Hatipoglu, and Z. Cinar, "Photocatalytic Degradation of Cefazolin over N-doped TiO2 under UV and Sunlight Irradiation: Prediction of the Reaction Paths via Conceptual DFT", Chem. Eng. J., 2012, 184, 113-124. https://doi.org/10.1016/j.cej.2012.01.011
  7. I. Ganesh, P. P. Kumar, A. K. Gupta, P. S. C. Sekhar, K. Radha, G. Padmanabham, and G. Sundararajan, "Preparation and Characterization of Fe-doped TiO2 Powders for Solar Light Response and Photocatalytic Applications", Process Appl. Ceram., 2012, 6, 21-36. https://doi.org/10.2298/PAC1201021G
  8. K. Gupta, R. P. Singh, A. Pandey, and A. Pandey, "Photocatalytic Antibacterial Performance of TiO2 and Ag-doped TiO2 Against S. aureus. P. aeruginosa and E. coli," Beilstein J. Nanotechnol., 2013, 4.1, 345-351. https://doi.org/10.3762/bjnano.4.40
  9. G. K. Upadhyay, J. K. Rajput, T. K. Pathak, and V. Kumar, "Synthesis of ZnO: TiO2 Nanocomposites for Photocatalyst Application in Visible Light", Vacuum, 2019, 160, 154-163. https://doi.org/10.1016/j.vacuum.2018.11.026
  10. R. Qin, F. Meng, M. W. Khan, B. Yu, H. Li, Z. Fan, and J. Gong, "Fabrication and Enhanced Photocatalytic Property of TiO2-ZnO Composite Photocatalysts", Mater. Lett., 2019, 240, 84-87. https://doi.org/10.1016/j.matlet.2018.12.139
  11. S. Moradi, P. Aberoomand-Azar, S. Raeis-Farshid, S. Abedini-Khorrami, and M. H. Givianrad, "The Effect of Different Molar Ratios of ZnO on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite", J. Saudi Chem. Soc., 2016, 20, 373-378. https://doi.org/10.1016/j.jscs.2012.08.002
  12. W. S. A. El-Yazeed and A. I. Ahmed, "Photocatalytic Activity of Mesoporous WO3/TiO2 Nanocomposites for the Photodegradation of Methylene Blue", Inorg. Chem. Commun., 2019, 105, 102-111. https://doi.org/10.1016/j.inoche.2019.04.034
  13. A. Arce-Sarria, C. L. Caicedo-Rosero, J. A. Lara-Ramos, J. DiazAngulo, and F. Machuca-Martinez, "Experimental Data on Synthesis and Characterization of WO3/TiO2 as Catalyst", Data in Brief, 2019, 25, 104151.
  14. Y. Li, H. Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao, and S. J. Kim "Highly Efficient Visible-light-induced Photocatalytic Activity of Nanostructured AgI/TiO2 Photocatalyst", Langmuir, 2008, 24, 8351-8357. https://doi.org/10.1021/la801046u
  15. H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, and L. Zhu, "Synthesis of Fe-doped WO3 Nanostructures with High Visible-light-driven Photocatalytic Activities", Appl. Catalysis B: Environ., 2015, 166, 112-120. https://doi.org/10.1016/j.apcatb.2014.11.020
  16. S. M. Ramay, A. Mahmood, S. Atiq, S. A. Siddiqi, and S. Naseem, "Photodegradation of Organic Pollutants Using Fe-doped ZnO", Materials Today: Proceedings, 2015, 2, 5485-5490. https://doi.org/10.1016/j.matpr.2015.11.074
  17. M. A. M. Khan, S. Kumar, T. Ahamad, and A. N. Alhazaa, "Enhancement of Photocatalytic and Electrochemical Properties of Hydrothermally Synthesized WO3 Nanoparticles via Ag Loading", J. Alloys Compd., 2018, 743, 485-493. https://doi.org/10.1016/j.jallcom.2018.01.343
  18. N. Bate, H. Shi, L. Chen, J. Wang, S. Xu, W. Chen, J. Li, and E. Wang, "Micelle-directing Synthesis of Ag-doped WO3 and MoO3 Composites for Photocatalytic Water Oxidation and Organic-dye Adsorption", Chem.-An Asian J., 2017, 12, 2597-2603. https://doi.org/10.1002/asia.201700951
  19. T. N. Ravishankar, K. Manjunatha, T. Ramakrishnappa, G. Nagaraju, D. Kumar, S. Sarakar, B. S. Anandakumar, G. T. Chandrappa, V. Reddy, and J. Dupont, "Comparison of the Photocatalytic Degradation of Trypan Blue by Undoped and Silver-doped Zinc Oxide Nanoparticles", Mat. Sci. Semicon. Proc., 2014, 26, 7-17. https://doi.org/10.1016/j.mssp.2014.03.027
  20. D. Yu, J. Bai, H. Liang, J. Wang, and C. Li, "Fabrication of a Novel Visible-light-driven Photocatalyst Ag-AgI-TiO2 Nanoparticles Supported on Carbon Nanofibers", Appl. Surface Sci., 2015, 349, 241-250. https://doi.org/10.1016/j.apsusc.2015.05.019