DOI QR코드

DOI QR Code

Characterization of Exterior Materials for Cylindrical 3D Printed Humanoid Robot Arm with Various Thicknesses

두께별 3D 프린팅 원통형 휴머노이드 로봇 팔 외장재 특성 분석

  • Ye-Eun Park (Department of Fashion and Textiles, Dong-A University) ;
  • Dikshita Chowdhury (Department of Fashion and Textiles, Dong-A University) ;
  • Sunhee Lee (Department of Fashion and Textiles, Dong-A University)
  • 박예은 (동아대학교 의상섬유학과) ;
  • ;
  • 이선희 (동아대학교 의상섬유학과)
  • Received : 2024.05.21
  • Accepted : 2024.06.22
  • Published : 2024.06.30

Abstract

In this study, the exterior materials for humanoid robot arm were developed using a cylindrical(Cyl) printing method based on fused filament fabrication(FFF) 3D printing technology. The cylinder printing method uses a three-dimensional cylinder modelingand prints large area curled inside using FFF 3D printing. Shore 95 A thermoplastic polyurethane filament was utilized to print soft exteriors with four different thicknesses (1.0, 2.5, 4.0 and 5.0 mm), and these were analyzed for their bending, compressive and tensile properties. The cylindrical models were created using Fusion 360 of 3D modeling program with specific dimensions and then sliced with set 3D printing conditions. The study found that printing time and weight increased proportionally with thickness, and the mechanical properties varied accordingly. Cyl1.0 of 1.0 mm thickness exhibited hard and tough characteristics due to its lack of infill, while Cyl5.0 of 5.0 mm thickness demonstrated excellent bending, tensile, and compressive properties, making it the most suitable for manufacturing. Other thicknesses, except for Cyl1.0, were also deemed appropriate for exterior materials of humanoid robot arm, depending on specific requirements such as lightweight and rigidity. Future research will investigate the application of these materials to other parts of humanoid robots.

Keywords

Acknowledgement

This research was funded by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. NRF-2021R1A4A1022059).

References

  1. A. Nikkhah, A. Yousefi-Koma, R. Mirjalili, and H. M. Farimani, "Design and Implementation of Small-Sized 3D Printed Surena-Mini Humanoid Platform", 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 2017, pp.82-87.
  2. S. Saeedvand, M. Jafari, H. S. Aghdasi, and J. Baltes, "A Comprehensive Survey on Humanoid Robot Development", Knowl. Eng. Re., 2019, 34, e20.
  3. P. C. Carando, S. D. Cruz, N. J. Lorena, J. P. Zabat, and A. C. Abad, "Wireless Controlled Robotic Arm for Handling Hazardous Chemicals", 4th DLSU Innovation and Technology (DITECH) Fair, Manila, Philippines, 2016.
  4. Y. Osawa, Y. Kinbara, M. Kageoka, K. Iida, and A. Kheddar, "Soft Robotic Shell with Active Thermal Display", Sci. Rep., 2021, 11, 20070.
  5. F. Iida and C. Laschi, "Soft Robotics: Challenges and Perspectives", Procedia Comput. Sci., 2011, 7, 99-102.
  6. N. Feng, Q. Shi, H. Wang, J. Gong, C. Liu, and Z. Lu, "A Soft Robotic Hand: Design, Analysis, sEMG Control, and Experiment", Int. J. Adv. Manuf. Technol., 2018, 97, 319-333.
  7. B. B. Kang, H. Choi, H. Lee, and K. J. Cho, "Exo-Glove Poly II: A Polymer-Based Soft Wearable Robot for the Hand with A Tendon-Driven Actuation System", Soft Robotics, 2019, 6, 214-227.
  8. L. Xing, M. Wang, J. Zhang, X. Chen, and X. Ye, "A Survey on Flexible Exoskeleton Robot", 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 2020, 1, 170-174.
  9. S. Lee, "4D Printing Materials for Soft Robots", Korean Fashion & Text. Res. J., 2022, 24, 667-685.
  10. A. Alspach, J. Kim, and K. Yamane, "Design of A Soft Upper Body Robot for Physical Human-Robot Interaction", 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea, 2015, pp.290-296.
  11. J. Kim, A. Alspach, and K. Yamane, "3D Printed Soft Skin for Safe Human-Robot Interaction", 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, pp.2419-2425.
  12. B. Berman, "3-D Printing: The New Industrial Revolution", Bus. Horiz., 2012, 55, 155-162.
  13. M. Despeisse and S. Ford, "The Role of Additive Manufacturing in Improving Resource Efficiency and Sustainability", 2015 IFIP International Conference on Advances in Production Management Systems, Tokyo, Japan, 2015, pp.129-136.
  14. M. T. Mastura, M. R. Alkahari, and A. S. Ikhwan, "Life Cycle Analysis of Fused Filament Fabrication: A Review", Des. Sustain. Green Mater. Process., 2021, 415-434.
  15. K. Kim, J. Park, J. H. Suh, M. Kim, Y. Jeong, and I. Park, "3D Printing of Multiaxial Force Sensors Using Carbon Nanotube (CNT)/Thermoplastic Polyurethane (TPU) Filaments", Sens. Actuators A: Phys., 2017, 263, 493-500.
  16. X. Lin, J. Gao, J. Wang, R. Wang, M. Gong, L. Zhang, Y. Lu, D. Wang, and L. Zhang, "Desktop Printing of 3D Thermoplastic Polyurethane Parts with Enhanced Mechanical Performance using Filaments with Varying Stiffness", Addit Manuf., 2021, 47, 102267.
  17. A. Frick and A. Rochman, "Characterization of TPU-Elastomers by Thermal Analysis (DSC)", Polym. Test., 2004, 23, 413-417.
  18. E. J. Shin, Y. S. Jung, H. Y. Choi, and S. Lee, "Synthesis and Fabrication of Biobased Thermoplastic Polyurethane Filament for FDM 3D Printing", J. Appl. Polym. Sci., 2022, 139, e52959.
  19. E. J. Shin, Y. Park, Y. S. Jung, H. Y. Choi, and S. Lee, "Fabrication and Characteristics of Flexible Thermoplastic Polyurethane Filament for Fused Deposition Modeling Three-Dimensional Printing", Polym. Eng. Sci., 2022, 62, 2947-2957.
  20. S. Kim, H. Seong, Y. Her, and J. Chun, "A Study of the Development and Improvement of Fashion Products using A FDM Type 3D Printer", Fash. Text., 2022, 6, 1-24.
  21. H. S. Kim and I. Kang, "Study on Status of Utilizing 3D Printing in Fashion Field", J. Korea Fashion and Costume Design Association, 2015, 17, 125-143.
  22. S. Mick, M. Lapeyre, P. Rouanet, C. Halgand, J. Benois-Pineau, F. Paclet, D. Cattaer, P. Y. Oudeyer, and A. de Rugy, "Reachy, a 3D-Printed Human-Like Robotic Arm as A Testbed for Human-Robot Control Strategies", Front. Neurorobot., 2019, 13, 65.
  23. Y. E. Park, H. Lee, I. Jung, and S. Lee, "Characterization of 3D Printed Wrist Brace with Various Tilting Angles of Re-entrant Pattern Using Thermoplastic Elastomer", J. Korean Soc. Cloth. Text., 2022, 46, 1074-1087.
  24. I. Jung, Y. E. Park, Y. Choi, J. Kim, and S. Lee, "A Study on The Motion Control of 3D Printed Fingers", Korean Fashion & Text. Res. J., 2022, 24, 333-345.
  25. D. Chowdhury, Y. E. Park, I. Jung, and S. Lee, "Characterization of Exterior Parts for 3D-Printed Humanoid Robot Arm with Various Patterns and Thicknesses", Polymers, 2024, 16, 988.
  26. I. Jung and S. Lee, "Shape Recovery Properties of 3D Printed Re-Entrant Strip using Shape Memory Thermoplastic Polyurethane Filaments with Various Temperature Conditions", Fash. Text., 2023, 10, 27.
  27. Z. Kai, I. Jung, and S. Lee, "Characterization of Conductive 3D Printed Fingertips Manufactured by Fused Filament Fabrication", Polymers, 2023, 15, 1426.
  28. L. Sun and L. Zhao, "Envisioning The Era of 3D Printing: A Conceptual Model for the Fashion Industry", Fash. Text., 2017, 4, 1-16.
  29. S. Kim, H. Seong, Y. Her, and J. Chun, "A Study of The Development and Improvement of Fashion Products using A FDM Type 3D Printer", Fash. Text., 2019, 6, 1-24.
  30. J. Lee and J. Chun, "Development of 3D Printed Bags Using Roll-Type Printing Method", Fashion Text. Res. J., 2022, 24, 505-518.
  31. M. Q. Tanveer, G. Mishra, S. Mishra, and R. Sharma, "Effect of Infill Pattern and Infill Density on Mechanical Behaviour of FDM 3D Printed Parts-A Current Review", Mater. Today Proc., 2022, 62, 100-108.
  32. KS M ISO 14125, "Standard Test Method for Fibre-Reinforced Plastic Composites-Determination of Flexural Properties", KATS, 2022.
  33. KS M ISO 604, "Standard Test Method for Plastics-Determination of Compressive Properties", KATS, 2023.
  34. KS K 0520, "Standard Test Method for Textiles-Tensile Properties of Fabrics-Determination of Maximum Force and Elongation at Maximum Force Using the Grab Method", KATS, 2021.