DOI QR코드

DOI QR Code

Investigation on the Technical Characteristics and Cases of Salt Cavern for Large-Scale Hydrogen Storage

대규모 수소 저장을 위한 암염 공동 저장 기술 특성 및 적용 사례 분석

  • Seonghak Cho (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Jeonghwan Lee (Department of Energy and Resources Engineering, Chonnam National University)
  • 조성학 (전남대학교 에너지자원공학과) ;
  • 이정환 (전남대학교 에너지자원공학과)
  • Received : 2024.02.23
  • Accepted : 2024.04.09
  • Published : 2024.06.30

Abstract

This study presents investigation on the technical characteristics and field cases of the salt cavern storage method for large-scale hydrogen storage. The salt cavern storage method enables effective hydrogen storage compared to other methods due to the low porosity and permeability of the rock salt that constitutes the cavern, which is not likely to leak and requires a small amount of cushion gas for operation. In addition, there is no chemical reaction between rock salt and hydrogen, and multiple injection/withdrawl cycles can be performed making it effective for peak shaving and short-term storage. The salt cavern is formed in three stages: leaching, debrining, and filling, and leakage tests are conducted to ensure stable operation. Field applications are currently performing to meet industrial demand in the surrounding area of four sites in the UK and Texas, USA, and salt cavern operation is being prepared for energy storage in European countries such as Germany and France. The investigated results in this study can be utilized as a basic guideline for the design of future hydrogen storage projects.

본 연구에서는 대규모 수소 저장을 위한 암염 공동(salt cavern) 저장 공법의 기술 특성과 현장사례 분석을 수행하였다. 암염 공동 저장 방식은 공동을 구성하는 암염(rock salt)의 낮은 공극률(porosity)과 투과도(permeability)로 인해 누출이 잘 일어나지 않고, 운영을 위한 쿠션 가스(cushion gas)의 양이 적어 타 공법 대비 효과적인 수소 저장이 가능하다. 암염-수소 간 화학적 반응이 거의 일어나지 않으며 다수의 주입/배출 사이클을 수행할 수 있어 피크 쉐이빙(peak shaving) 및 단주기 저장에 효과적이다. 공동은 크게 침출(leaching), 염수제거(debrining), 충진(filling)의 3단계로 형성되며 누출 실험을 통해 공동의 안정성을 평가한다. 현재 영국과 미국 Texas 주의 4개소에서 주변 지역의 산업 수요를 충당하기 위한 현장 적용이 이루어지고 있으며, 독일, 프랑스와 같은 유럽 지역에서 에너지 저장을 위한 암염 공동 운영을 준비하고 있다. 본 연구 결과는 향후 수소 저장 프로젝트 설계를 위한 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 RS-2022-00143541). 또한 본 연구는 한국에너지기술평가원(KETEP)의 지원을 받아 수행되었습니다(No. 20212010200010).

References

  1. Gallagher Re, Natural Catastrophe Report: First Half, (2023)
  2. IEA, Energy Technology Perspectives 2020, (2020)
  3. KDB, Problems and Improvements in the Korean Solar and Wind Power Industry, (2019)
  4. KISTEP, Technology Trend Brief: Hydrogen Production, (2021)
  5. Laban, M.P., "Hydrogen Storage in Salt Caverns: Chemical modelling and analysis of large-scale hydrogen storage in underground salt caverns", Delft University of Technology, (2020)
  6. U.S. DOE, Department of Energy Hydrogen Program Plan, (2020)
  7. Andersson, J., Gronkvist, S., "Large-scale storage of hydrogen", International Journal of Hydrogen Energy, 44(23), 11901-11919, (2019)
  8. Park, E., Jun, Y., and Oh, S., "Carbon Neutrality and Underground Hydrogen Storage", Journal of The Korean Society of Mineral and Energy Resources Engineers, 59(5), 462-473, (2022)
  9. Pablo, B., Faruk C., "Effective Modeling and Analysis of Salt-Cavern Natural-Gas Storage ", SPE Production & Operation, 29(1), 51-60, (2014)
  10. Blanco, H., Faaij, A., "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage", Renewable and Sustainable Energy Reviews, 81(1), 1049-1086, (2018)
  11. Lemieux, A., Sharp, K., Shkarupin, A., "Preliminary assessment of underground hydrogen storage sites in Ontario, Canada",International Journal of Hydrogen Energy, 44(29), 15193-15204, (2019)
  12. Cyran, K., Kowalski, M., "Shape Modelling and Volume Optimisation of Salt Caverns for Energy Storage", Applied Sciences, 11(1), 423, (2021)
  13. U.S Department of Energy, Hydrogen Storage (2024)
  14. Griffioen, J., Wensem, J.V., Oomes, J., Barends, F., Breunese, J., Bruining, H., Olsthoorn, T., Stams, A., and Stoel, A., "A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands", Science of The Total Environment, 485, 810-819, (2014)
  15. Hui, S., Yin, S., Pang, X., Chen, Z., Shi, K., "Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada", Mining, 3, 399-408, (2023)
  16. EIA, The basics of underground natural gas storage, (2015)
  17. Azin, R., Nasiri, A., Entezari, A.J., and Montazeri, G.H., "Investigation of Underground Gas Storage in a Partially Depleted Gas Reservoir", CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, Alberta, 16-19, (2008)
  18. Lord, A.S., Kobos, P.H., Borns, D.J., "Geologic storage of hydrogen: Scaling up to meet city transportation demands", International Journal of Hydrogen Energy, 39(28), 15570-15582, (2014)
  19. Wallace, R.L., Cai, Z., Zhang, H., Zhang, K., Guo, C., " Utility-scale subsurface hydrogen storage: UK perspectives and technology", International Journal of Hydrogen Energy, 46(49), 25137-25159, (2021)
  20. Visser, T., "Seasonal Hydrogen Storage in Dutch Depleted Gas Reservoirs: A Feasibility Study for The Netherlands", Delft University of Technology, (2020)
  21. Gaffney Cline, Underground Hydrogen Storage, (2022)
  22. Quintos Fuentes, J.E., Santos, D.M.F. "Technical and Economic Viability of Underground Hydrogen Storage", Hydrogen, 4, 975-1000 , (2023)
  23. Lankof, L., Urbanczyk, K., Tarkowski, R., "Assessment of the potential for underground hydrogen storage in salt domes", Renewable and Sustainable Energy Reviews, 160, 112309, (2022)
  24. Cyran, K., "Insight Into a Shape of Salt Storage Caverns", Archives of Mining Sciences, 65(2), 363-398, (2020)
  25. Korzeniowski, W., Poborska-Mlynarska, K., Skrzypkowski, K., Zagorski, K., Chromik, M., "Cutting Niches in Rock Salt by Means of a High-Pressure Water Jet in Order to Accelerate the Leaching of Storage Caverns for Hydrogen or Hydrocarbons", Energies, 13(8), 1- 24, (2020)
  26. Berset, P., Brouard, B., Durup, J.G., "Tightness Tests in Salt-Cavern Wells", Oil & Gas Science and Technology, 56(5), 451-469, (2001)
  27. Williams, J.D.O, Williamson, J.P., Evans, D., Kirk, K., Sunny, K., Hough, E., Vosper, H and Akhurst, M., "Does the United Kingdom have sufficient geological storage capacity to support a hydrogen economy? Estimating the salt cavern storage potential of bedded halite formations", Journal of Energy Storage, 53, 105109,(2022)
  28. Zhu S., Shi, X., Yang, C., Li, Y., Li, H., Yang, K., Wei, X., Bai, W., Liu, X., "Hydrogen loss of salt cavern hydrogen storage", Renewable Energy, 218, 119267, (2023)
  29. Sambo, C., Dudun, A., Samuel, S.A., Esenenjor, P., Muhammed, N.S., Hag, B., "A review on worldwide underground hydrogen storage operating and potential fields", International Journal of Hydrogen Energy, 47(54), 22840-22880, (2022)
  30. ATKINS, Salt Cavern Appraisal for Hydrogen and Gas Storage, (2020)
  31. Yan, H., Zhang, W., Kang, J., Yuan T., "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China". Energies, 16(13), 4837,(2023)
  32. Ineris, State of knowledge on the storage of hydrogen in salt caverns. (2022)
  33. Hypster project, Design of tightness test - public summary, (2021)
  34. Hemme, C., Berk, W., "Potential risk of H2S generation and release in salt cavern gas storage", Journal of Natural Gas Science and Engineering, 47, 114-123, (2017)