DOI QR코드

DOI QR Code

A novel power quality improved AC voltage controller for soft starting of squirrel cage induction motors

  • Mohamed Faizal (Department of Electrical and Electronics Engineering, V V College of Engineering) ;
  • G. Kannayeram (Department of Electrical and Electronics Engineering, Sri Ramakrishna Institute of Technology) ;
  • Agnes Prema Mary (Department of Electronics and Communication Engineering, Jayaraj Annapackiam CSI College of Engineering)
  • Received : 2023.09.28
  • Accepted : 2024.02.14
  • Published : 2024.07.20

Abstract

Soft starting of a squirrel cage induction motor (SCIM) is a general requirement in industries. Until now, the soft starting systems of squirrel cage induction motors have been using phase angle controllers implemented using thyristors. The major disadvantage of thyristors-based control is that the source current becomes polluted with harmonics. In addition, while phase angle-controlled soft starting schemes are suitable for star connected motors, they introduce high torque ripple resulting in noise and turbulence. To overcome this issue, a novel soft starting topology is proposed for the squirrel cage induction motors that guarantees improved power quality on both the source side and the load side. The proposed system uses a three-phase power electronic chopper with a freewheeling arrangement. Throughout the starting process, the source side current is sinusoidal and the source side power factor is unity. The proposed method has been found to be useful for both Star and Delta connected squirrel cage induction motors. The proposed system has been validated using simulations in the MATLAB/Simulink environment and on an experimental prototype.

Keywords

References

  1. McElveen, R.F., Toney, M.K.: Starting high-inertia loads. IEEE Trans. Ind. Appl. 37(1), 137-144 (2001)
  2. Larabee, J., Pellegrino, B., Flick, B.: Induction motor starting methods and issues. In: Proc. Rec. Conf. Papers. Ind. Appl. Soc., 52nd Annu. Petroleum Chem. Ind. Conf., pp. 217-222 (2005)
  3. Yang, C., Park, S., Lee, S.B., Jang, G., Kim, S., Jung, G., Lee, J., Shim, S., Lim, Y.K., Kim, J.: Starting current analysis in medium voltage induction motors: detecting rotor faults and reactor starting defects. IEEE Ind. Appl. Mag. 25(6), 69-79 (2019)
  4. Akbaba, M.: A novel simple method for elimination of DOL starting transient torque pulsations of three-phase induction motors. Eng. Sci. Technol. Int. J. (2021). https://doi.org/10.1016/j.jestch.2020.06.007
  5. Yeh, C., Demerdash, N.A.O.: Fault-tolerant soft starter control of induction motors with reduced transient torque pulsations. IEEE Trans. Energy Convers. 24(4), 848-859 (2009)
  6. Deraz, S.A., Azazi, H.Z.: Current limiting soft starter for three phase induction motor drive system using PWM AC chopper. IET Power Electron. 10(11), 1298-1306 (2017)
  7. Jiang, F., Tu, C., Guo, Q., Wu, Z., Li, Y.: Adaptive soft starter for a three-phase induction motor driving device using a multifunctional series compensator. IET-Lectr. Power Appl. 13(7), 973-983 (2019)
  8. Wang, Y., Yin, K., Yuan, Y., Chen, J.: Current limiting soft starting method for a high voltage and high-power motor. Energies 12(16), 3068-3079 (2019)
  9. Furtsev, N.G., Petrikov, A.S., Belyaev, A.N.: Optimizing soft starter algorithms for heavy induction motors to ensure stable operation of autonomous power systems. In: Proc. IEEE Conf. Russian Young Researchers Electr. Electron. Eng. (EIConRus), St. Petersburg, pp. 1222-1226 (2020)
  10. Thanyaphirak, V., Kinnares, V., Kunakorn, A.: Comparison of starting current characteristics for three phase induction motor due to phase control soft starter and asynchronous PWM AC chopper. J. Electr. Eng. Technol. 12(3), 1090-1100 (2017)
  11. Solveson, M.G., Mirafzal, B., Demerdash, N.A.O.: Soft-started induction motor modeling and heating issues for diferent starting profles using a fux linkage ABC frame of reference. IEEE Trans. Ind. Appl. 42(4), 973-982 (2006)
  12. Zenginobuz, G., Cadirci, I., Ermis, M., Barlak, C.: Performance optimization of induction motors during voltage-controlled soft starting. IEEE Trans. Energy Convers. 19(2), 278-288 (2004)
  13. Shabestari, P.M., Mehrizi-Sani, A.: Current limiting and torque pulsation reduction of the induction motors. In: Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), pp. 1-5 (2019)
  14. Ghadimi, M., Ramezani, A., Mohammadimehro, M.: Soft starter modeling for an induction drive starting study in an industrial plant. In: Proc. 5th Eur. Symp. Comput.Modeling Simulation (UKSim), pp. 245-250 (2011)
  15. Pandey, S., Bahadure, S., Kanakgiri, K., Singh, N.M.: Two-phase soft start control of three-phase induction motor. In: Proc. IEEE 6th Int. Conf. Power Syst. (ICPS), pp. 1-6 (2016)
  16. Sundareswaran, K., Nayak, P.S.: Ant colony based feedback controller design for soft-starter fed induction motor drive. Appl. Soft Comput. 12(5), 1566-1573 (2012)
  17. Sundareswaran, K., Srinivasarao, P.: Design of feedback controller for soft-starting induction motor drive system using genetic algorithm. J. Ind. Electron. Drives 1(2), 111-120 (2014)
  18. Sundareswaran, K., Nayak, P.: Particle swarm optimization based feedback controller design for induction motor soft-starting. Aust. J. Electr. Electron. Eng. 11(1), 55-63 (2014)
  19. Mohanty, M., Sahu, S.K., Nayak, M.R., Satpathy, A., Choudhury, S.: Application of salp swarm optimization for pi controller to mitigate transients in a three-phase soft starter-based induction motor. In: Advances in Electrical Control and Signal Systems, vol. 665. Springer, Singapore (2020)
  20. Nayak, P.S.R., Rufzal, T. A.: Performance analysis of feedback controller design for induction motor soft-starting using bioinspired algorithms. In: Proc. Int. Conf. Power Instrum. Control Comput. (PICC), pp.1-6 (2018)
  21. Abdalla, O.H., Elmastry, S., El-Korfolly, M.I., Htita, I.: Harmonic analysis of an arc furnace load based on the IEEE 519-2014 standard. In: 23rd International Middle-East Power Systems Conference, IEEE Xplore paper 170, pp. 1-7 (2022)