DOI QR코드

DOI QR Code

Distributed sliding mode consensus control of energy storage systems in wind farms for power system frequency regulation

  • Yinfang Zhu (School of Electrical Engineering, Chongqing University) ;
  • Linyun Xiong (School of Electrical Engineering, Chongqing University) ;
  • Changyu Ban (School of Electrical Engineering, Chongqing University) ;
  • Sunhua Huang (Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University)
  • 투고 : 2023.10.21
  • 심사 : 2024.02.21
  • 발행 : 2024.07.20

초록

With the increasing penetration of wind power into the grid, its intermittent and fluctuating characteristics pose a challenge to the frequency stability of grids. Energy storage systems (ESSs) are beginning to be used to assist wind farms (WFs) in providing frequency support due to their reliability and fast response performance. However, the current schemes mostly focused on the sole operation of either WT or ESSs for frequency support, lacking in economy and reliability. To address these issues, this work proposes a sliding mode consensus control (SMCC) method for ESSs to assist the frequency response of WTs. First, a coordination strategy for the WTs and ESS is proposed to reinforce the frequency support capability of a WT-ESS by determining the optimal capacity of ESSs. Meanwhile, a novel SMCC is proposed to achieve proportional power sharing among ESSs and increase the total power output of the entire WFs during wind energy shortages. Moreover, an event triggered communication mechanism is utilized to reduce the information exchanges among ESSs. Subsequently, a Lyapunov stability analysis is conducted to prove the stability and finite time consensus of the proposed method. Simulation case studies are conducted in IEEE 39-bus system to validate the effectiveness of the proposed framework.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China under the Grant Number 52377074.

참고문헌

  1. Bouzid, A.M., Guerrero, J.M., Cheriti, A., Bouhamida, M., Sicard, P., Benghanem, M.: A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 44, 751-766 (2015)
  2. Huang, S., Xiong, L., Zhou, Y., Liu, J., Jia, Q., Li, P.: Distributed predefined-time secondary frequency and average voltage control for islanded AC microgrids. IEEE Trans. Power Syst. 38(5), 4191-4205 (2023)
  3. Nguyen, C., Lee, H.: Power management approach to minimize battery capacity in wind energy conversion systems. IEEE Trans. Ind. Appl. 53(5), 4843-4854 (2017)
  4. Bjork, J., Pombo, D.V., Johansson, K.H.: Variable-speed wind turbine control designed for coordinated fast frequency reserves. IEEE Trans. Power Syst. 37(2), 1471-1481 (2022)
  5. Yuan, H., Wang, D., Zhou, X.: Frequency support of DFIG-based wind turbine via virtual synchronous control of inner voltage vector. Electr. Power Syst. Res. 225(1), 1-13 (2023)
  6. Wang, T., Jin, M., Li, Y., Wang, J., Wang, Z., Huang, S.: Adaptive damping control scheme for wind grid-connected power systems with virtual inertia control. IEEE Trans. Power Syst. 37(5), 3902-3912 (2022)
  7. Castellano, R.N.: Alternative energy technologies: opportunities and markets. Old City Publishing, Inc. (2012)
  8. Chukwu, U.C., Mahajan, S.M.: V2G parking lot with PV rooftop for capacity enhancement of a distribution system. IEEE Trans. Sustain. Energy. 5(1), 119-127 (2014)
  9. Xing, L., Mishra, Y., Tian, Y., Ledwich, G., Wen, C., He, W.: Distributed voltage regulation for low-voltage and high-PV-penetration networks with battery energy storage systems subject to communication delay. IEEE Trans. Control Syst. Technol. 30(1), 426-433 (2022)
  10. Li, J., Xiong, R., Yang, Q., Liang, F., Zhang, M., Yuan, W.: Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system. Appl. Energy 201(1), 257-269 (2017)
  11. Mejia-Ruiz, G.-E., Kim, J.-H., Paternina, M.-R.-A., Sevilla, F.-R.-S., Korba, P.: Fast hierarchical coordinated controller for distributed battery energy storage systems to mitigate voltage and frequency deviations. Appl. Energy 323(1), 1-13 (2022)
  12. Marchgraber, J., Gawlik, W., Wailzer, G.: Reducing SoC management and losses of battery energy storage systems during provision of frequency containment reserve. J. Energy Storage. 27(1), 1-10 (2020)
  13. Obaid, Z.A., Cipcigan, L.M., Muhssin, M.T., Sami, S.S.: Control of a population of battery energy storage system for frequency response. Int. J. Electr. Power Energy Syst.Electr. Power Energy Syst. 115(1), 1-8 (2020)
  14. Baros, S., Ilic, M.D.: A consensus approach to real-time distributed control of energy storage systems in wind farms. IEEE Trans. Smart Grid 10(1), 613-625 (2019)
  15. Nguyen, D.H., Khazaei, J.: Multiagent time-delayed fast consensus design for distributed battery energy storage systems. IEEE Trans. Sustain. Energy. 9(3), 1397-1406 (2018)
  16. Xing, L., Mishra, Y., Tian, Y.-C., Ledwich, G., Su, H., Peng, C., Fei, M.: Dual-consensus-based distributed frequency control for multiple energy storage systems. IEEE Trans. Smart Grid 10(6), 6396-6403 (2019)
  17. Miao, L., Wen, J., Xie, H., Yue, C., Lee, W.: Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support. IEEE Trans. Ind. Appl. 51(4), 2732-2742 (2015)
  18. Babes, B.L., Boutaghane, A., Hamouda, N., Mezaache, M.: Design of a robust voltage controller for a DC-DC buck converter using fractional-order terminal sliding mode control strategy. In: Proc. International Conference on Advanced Electrical Engineering, 1-6 (2019)
  19. Babes, B.L., Mekhilef, S., Boutaghane, A., Rahmani, L.: Fuzzy approximation-based fractional-order nonsingular terminal sliding mode controller for DC-DC buck converters. IEEE Trans. Power Electron. 37(3), 2749-2760 (2021)
  20. Huang, S., Wang, J., Xiong, L., Liu, J., Li, P., Wang, Z.: Distributed predefined-time fractional-order sliding mode control for power system with prescribed tracking performance. IEEE Trans. Power Syst. 37(3), 2233-2246 (2022)
  21. Xiong, L., Huang, S., Zhou, Y., Li, P., Wang, Z., Khan, M.W.: Voltage and frequency regulation with WT-PV-BESS in remote weak grids via fixed-time containment control. IEEE Trans. Power Syst. 38(3), 2719-2735 (2023)
  22. Khazaei, J., Miao, Z.: Consensus control for energy storage systems. IEEE Trans. Smart Grid 9(4), 3009-3017 (2018)
  23. Knap, V., Chaudhary, S.K., Stroe, D.-I., Swierczynski, M., Craciun, B.-I., Teodorescu, R.: Sizing of an energy storage system for grid inertial response and primary frequency reserve. IEEE Trans. Power Syst. 31(5), 3447-3456 (2016)
  24. Xiong, L., Li, J., Li, P., Huang, S., Wang, Z., Wang, J.: Event triggered prescribed time convergence sliding mode control of DFIG with disturbance rejection capability. Int. J. Electr. Power Energy Syst.Electr. Power Energy Syst. 131(1), 1-14 (2021)
  25. Qu, L., Qiao, W.: Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Trans. Ind. Appl. 47(1), 359-367 (2011)
  26. Peng, X., Yao, W., Yan, C., Wen, J., Cheng, S.: Two-stage variable proportion coefficient based frequency support of grid-connected DFIG WTs. IEEE Trans. Power Syst. 35(2), 962-974 (2020)
  27. Gonzalez-Longatt, F., Wall, P., Terzija, V.: Wake effect in wind farm performance: steady-state and dynamic behavior. Renew. Energy 39(1), 329-338 (2012)
  28. Xiong, L., Yang, S., Huang, S., He, D., Li, P., Khan, M.W., Wang, J.: Optimal allocation of energy storage systems in DFIG wind farms for frequency support considering wake effect. IEEE Trans. Power Syst. 37(3), 2097-2112 (2022)