Acknowledgement
This work was supported by National Natural Science Foundation of China (52277205), Natural Science Foundation of Jiangsu Province (BK20230108), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_2695).
References
- Dekka, A., Wu, B., Fuentes, R.L., Perez, M., Zargari, N.R.: Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Select. Topics. Power. Electr. 5(4), 1631-1656 (2017) https://doi.org/10.1109/JESTPE.2017.2742938
- Sun, P., Tian, Y., Pou, J., Konstantinou, G.: Beyond the MMC: extended modular multilevel converter topologies and applications. IEEE Open J. Power Electron. 3, 317-333 (2022) https://doi.org/10.1109/OJPEL.2022.3175714
- Ronanki, D., Williamson, S.S.: Modular multilevel conver-ters for transportation electrification: challenges and opportunities. IEEE. Transact. Trans. Electrific. 4(2), 399-407 (2018) https://doi.org/10.1109/TTE.2018.2792330
- Dong, P., Lyu, J., Cai, X.: Modeling, analysis, and enhanced control of modular multilevel converters with asymmetric arm impedance for HVDC applications. J. Power Electron. 18(6), 1683-1696 (2018)
- Wang, C., Xu, J., Pan, X., Gong, W., Zhu, Z., Xu, S.: Impedance modeling and analysis of series-connected modular multilevel converter (MMC) and its comparative study with conventional MMC for HVDC applications. IEEE Trans. Power Deliv. 37(4), 3270-3281 (2022) https://doi.org/10.1109/TPWRD.2021.3125699
- Kolb, J., Kammerer, F., Gommeringer, M., Braun, M.: Cascaded control system of the modular multilevel converter for feeding variable-speed drives. IEEE Trans. Power Electron. 30(1), 349-357 (2015) https://doi.org/10.1109/TPEL.2014.2299894
- Elserougi, A.A., Abdelsalam, I., Massoud, A., Ahmed, S.: Modular multilevel converter with self-energy equalization for medium voltage AC drive applications. IEEE Trans. Industr. Electron. 68(12), 11881-11894 (2021) https://doi.org/10.1109/TIE.2020.3045585
- Ota, J.I.Y., Shibano, Y., Niimura, N., Akagi, H.: A phase-shifted-PWM D-STATCOM using a modular multilevel cascade converter (SSBC)-part I: modeling, analysis, and design of current control. IEEE Trans. Ind. Appl. 51(1), 279-288 (2015) https://doi.org/10.1109/TIA.2014.2326079
- Mendonca, D.D.C., Cupertino, A.F., Pereira, H.A., Teodorescu, R.: Minimum cell operation control for power loss reduction in MMC-based STATCOM. IEEE J. Emerg. Select. Topics.Power. Electr. 9(2), 1938-1950 (2021) https://doi.org/10.1109/JESTPE.2020.2979123
- Vasiladiotis, M., Cherix, N., Rufer, A.: Accurate capacitor voltage ripple estimation and current control considerations for grid-connected modular multilevel converters. IEEE Trans. Power Electron. 29(9), 4568-4579 (2014) https://doi.org/10.1109/TPEL.2013.2286293
- Isik, S., Alharbi, M., Bhattacharya, S.: An optimized circulating current control method based on PR and PI controller for MMC applications. IEEE Trans. Ind. Appl. 57(5), 5074-5085 (2021) https://doi.org/10.1109/TIA.2021.3092298
- Dekka, A., Wu, B., Yaramasu, V., Fuentes, R.L., Zargari, N.R.: Model predictive control of high-power modular multilevel converters-an overview. IEEE J. Emerg. Select. Topics. Power. Electr. 7(1), 168-183 (2019) https://doi.org/10.1109/JESTPE.2018.2880137
- Nguyen, M.H., Kwak, S., Choi, S.: Indirect MPC method with improved output voltage and current waveforms for MMCs. J. Power Electron. 22(4), 674-687 (2022) https://doi.org/10.1007/s43236-022-00384-3
- Reddy, G.A., Shukla, A.: Circulating current optimization control of MMC. IEEE Trans. Industr. Electron. 68(4), 2798-2811 (2021) https://doi.org/10.1109/TIE.2020.2977565
- Gong, Z., Dai, P., Yuan, X., Wu, X., Guo, G.: Design and experimental evaluation of fast model predictive control for modular multilevel converters. IEEE Trans. Industr. Electron. 63(6), 3845-3856 (2016) https://doi.org/10.1109/TIE.2015.2497254
- Gutierrez, B., Kwak, S.-S.: Modular multilevel converters (MMCs) controlled by model predictive control with reduced calculation burden. IEEE Trans. Power Electron. 33(11), 9176-9187 (2018) https://doi.org/10.1109/TPEL.2018.2789455
- Chen, X., Liu, J., Song, S., Ouyang, S., Wu, H., Yang, Y.: Modified increased-level model predictive control methods with reduced computation load for modular multilevel converter. IEEE Trans. Power Electron. 34(8), 7310-7325 (2019) https://doi.org/10.1109/TPEL.2018.2882690
- Moon, J.-W., Gwon, J.-S., Park, J.-W., Kang, D.-W., Kim, J.-M.: Model predictive control with a reduced number of considered states in a modular multilevel converter for HVDC system. IEEE Trans. Power Deliv. 30(2), 608-617 (2015) https://doi.org/10.1109/TPWRD.2014.2303172
- Huang, J., Yang, B., Guo, F., Wang, Z., Tong, X., Zhang, A., Xiao, J.: Priority sorting approach for modular multilevel converter based on simplified model predictive control. IEEE Trans. Industr. Electron. 65(6), 4819-4830 (2018) https://doi.org/10.1109/TIE.2017.2774725
- Dong, J., Jia, M., Han, Y., Geng, Z., Zhong, Y.: An improved MPC integrating fuzzy PI of an MMC-HVDC system. 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 471-476 (2019)
- Ma, W., Gong, D., Guan, Z., Li, W., Meng, F., Liu, X., Wang, Y.: Compensatory model predictive current control for modular multilevel converter with reduced computational complexity. IEEE Access. 10, 106859-106872 (2022) https://doi.org/10.1109/ACCESS.2022.3208971