DOI QR코드

DOI QR Code

Three-stage model predictive control for modular multilevel converters with comprehensive performance optimization

  • Ping Tuo (School of Electrical Engineering, China University of Mining and Technology) ;
  • Zheng Gong (School of Electrical Engineering, China University of Mining and Technology) ;
  • Xi Zheng (School of Electrical Engineering, China University of Mining and Technology) ;
  • Chun Zhao (School of Electrical Engineering, China University of Mining and Technology) ;
  • Xiaojie Wu (School of Electrical Engineering, China University of Mining and Technology)
  • Received : 2023.06.15
  • Accepted : 2024.02.28
  • Published : 2024.07.20

Abstract

Model predictive control (MPC) is recognized as an efficient control method for the modular multilevel converter (MMC), owing to its advantages, such as good robustness, rapid dynamic response, and multi-objective control. However, due to the coupling relationship between the ac-side current and the circulating current, the existing MPC has an impact on the ac-side current while suppressing the circulating current. In this paper, the relationship between the ac-side current performance and circulating current suppression is discussed in detail, and a three-stage MPC (TS-MPC) strategy is proposed to optimize the comprehensive performance. With the ac-side current control, circulating current control, and comprehensive optimization control, the optimum performance of both the ac-side current and circulating current suppression is realized while maintaining a low computational burden. Moreover, a grouping sorting algorithm is designed to reduce the calculation burden and to balance the capacitor voltages. The steady-state and transient performances of the proposed TS-MPC strategy have been verified by experimental results, which validates its correctness and effectiveness.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (52277205), Natural Science Foundation of Jiangsu Province (BK20230108), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_2695).

References

  1. Dekka, A., Wu, B., Fuentes, R.L., Perez, M., Zargari, N.R.: Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Select. Topics. Power. Electr. 5(4), 1631-1656 (2017) https://doi.org/10.1109/JESTPE.2017.2742938
  2. Sun, P., Tian, Y., Pou, J., Konstantinou, G.: Beyond the MMC: extended modular multilevel converter topologies and applications. IEEE Open J. Power Electron. 3, 317-333 (2022) https://doi.org/10.1109/OJPEL.2022.3175714
  3. Ronanki, D., Williamson, S.S.: Modular multilevel conver-ters for transportation electrification: challenges and opportunities. IEEE. Transact. Trans. Electrific. 4(2), 399-407 (2018) https://doi.org/10.1109/TTE.2018.2792330
  4. Dong, P., Lyu, J., Cai, X.: Modeling, analysis, and enhanced control of modular multilevel converters with asymmetric arm impedance for HVDC applications. J. Power Electron. 18(6), 1683-1696 (2018)
  5. Wang, C., Xu, J., Pan, X., Gong, W., Zhu, Z., Xu, S.: Impedance modeling and analysis of series-connected modular multilevel converter (MMC) and its comparative study with conventional MMC for HVDC applications. IEEE Trans. Power Deliv. 37(4), 3270-3281 (2022) https://doi.org/10.1109/TPWRD.2021.3125699
  6. Kolb, J., Kammerer, F., Gommeringer, M., Braun, M.: Cascaded control system of the modular multilevel converter for feeding variable-speed drives. IEEE Trans. Power Electron. 30(1), 349-357 (2015) https://doi.org/10.1109/TPEL.2014.2299894
  7. Elserougi, A.A., Abdelsalam, I., Massoud, A., Ahmed, S.: Modular multilevel converter with self-energy equalization for medium voltage AC drive applications. IEEE Trans. Industr. Electron. 68(12), 11881-11894 (2021) https://doi.org/10.1109/TIE.2020.3045585
  8. Ota, J.I.Y., Shibano, Y., Niimura, N., Akagi, H.: A phase-shifted-PWM D-STATCOM using a modular multilevel cascade converter (SSBC)-part I: modeling, analysis, and design of current control. IEEE Trans. Ind. Appl. 51(1), 279-288 (2015) https://doi.org/10.1109/TIA.2014.2326079
  9. Mendonca, D.D.C., Cupertino, A.F., Pereira, H.A., Teodorescu, R.: Minimum cell operation control for power loss reduction in MMC-based STATCOM. IEEE J. Emerg. Select. Topics.Power. Electr. 9(2), 1938-1950 (2021) https://doi.org/10.1109/JESTPE.2020.2979123
  10. Vasiladiotis, M., Cherix, N., Rufer, A.: Accurate capacitor voltage ripple estimation and current control considerations for grid-connected modular multilevel converters. IEEE Trans. Power Electron. 29(9), 4568-4579 (2014) https://doi.org/10.1109/TPEL.2013.2286293
  11. Isik, S., Alharbi, M., Bhattacharya, S.: An optimized circulating current control method based on PR and PI controller for MMC applications. IEEE Trans. Ind. Appl. 57(5), 5074-5085 (2021) https://doi.org/10.1109/TIA.2021.3092298
  12. Dekka, A., Wu, B., Yaramasu, V., Fuentes, R.L., Zargari, N.R.: Model predictive control of high-power modular multilevel converters-an overview. IEEE J. Emerg. Select. Topics. Power. Electr. 7(1), 168-183 (2019) https://doi.org/10.1109/JESTPE.2018.2880137
  13. Nguyen, M.H., Kwak, S., Choi, S.: Indirect MPC method with improved output voltage and current waveforms for MMCs. J. Power Electron. 22(4), 674-687 (2022) https://doi.org/10.1007/s43236-022-00384-3
  14. Reddy, G.A., Shukla, A.: Circulating current optimization control of MMC. IEEE Trans. Industr. Electron. 68(4), 2798-2811 (2021) https://doi.org/10.1109/TIE.2020.2977565
  15. Gong, Z., Dai, P., Yuan, X., Wu, X., Guo, G.: Design and experimental evaluation of fast model predictive control for modular multilevel converters. IEEE Trans. Industr. Electron. 63(6), 3845-3856 (2016) https://doi.org/10.1109/TIE.2015.2497254
  16. Gutierrez, B., Kwak, S.-S.: Modular multilevel converters (MMCs) controlled by model predictive control with reduced calculation burden. IEEE Trans. Power Electron. 33(11), 9176-9187 (2018) https://doi.org/10.1109/TPEL.2018.2789455
  17. Chen, X., Liu, J., Song, S., Ouyang, S., Wu, H., Yang, Y.: Modified increased-level model predictive control methods with reduced computation load for modular multilevel converter. IEEE Trans. Power Electron. 34(8), 7310-7325 (2019) https://doi.org/10.1109/TPEL.2018.2882690
  18. Moon, J.-W., Gwon, J.-S., Park, J.-W., Kang, D.-W., Kim, J.-M.: Model predictive control with a reduced number of considered states in a modular multilevel converter for HVDC system. IEEE Trans. Power Deliv. 30(2), 608-617 (2015) https://doi.org/10.1109/TPWRD.2014.2303172
  19. Huang, J., Yang, B., Guo, F., Wang, Z., Tong, X., Zhang, A., Xiao, J.: Priority sorting approach for modular multilevel converter based on simplified model predictive control. IEEE Trans. Industr. Electron. 65(6), 4819-4830 (2018) https://doi.org/10.1109/TIE.2017.2774725
  20. Dong, J., Jia, M., Han, Y., Geng, Z., Zhong, Y.: An improved MPC integrating fuzzy PI of an MMC-HVDC system. 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 471-476 (2019)
  21. Ma, W., Gong, D., Guan, Z., Li, W., Meng, F., Liu, X., Wang, Y.: Compensatory model predictive current control for modular multilevel converter with reduced computational complexity. IEEE Access. 10, 106859-106872 (2022) https://doi.org/10.1109/ACCESS.2022.3208971