Acknowledgement
This research was supported by National Research Foundation of Korea (RS-2023-00219443).
References
- Lucia, O., Burdio, J.M., Millan, I., Acero, J., Barragan, L.A.: Efficiency-oriented design of ZVS half-bridge series resonant inverter with variable frequency duty cycle control. IEEE Trans. Power Electron. 25(7), 1671-1674 (2010) https://doi.org/10.1109/TPEL.2010.2042461
- Lucia, O., Burdio, J. M., Millan, I., Acero, J., and Llorente, S.: Efficiency optimization of half-bridge series resonant inverter with asymmetrical duty cycle control for domestic induction heating. In 2009 13th European Conference on Power Electronics and Applications, 1-6 (2009)
- Grajales, L., Sabate, J. A., Wang, K. R., Tabisz, W. A. and Lee, F. C.: Design of a 10 kW, 500 kHz phase-shift controlled series-resonant inverter for induction heating. Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, 843-849 (1993)
- Viriya, P., Yongyuth, N., Matsuse, K.: Analysis of two continuous control regions of conventional phase shift and transition phase shift for induction heating inverter under ZVS and NON-ZVS operation. IEEE Trans. Power Electron. 23(6), 2794-2805 (2008) https://doi.org/10.1109/TPEL.2008.2004037
- Heo, K.-W., Jin, J., Jung, J.-H.: Maximum voltage gain tracking algorithm for high-efficiency of two-stage induction heating systems using resonant impedance estimation. IEEE Trans. Ind. Electron. 70(8), 7934-7943 (2023) https://doi.org/10.1109/TIE.2022.3225853
- Kim, H.-J., Heo, K.-W., Jung, J.-H.: Temperature estimation techniques of a pot through real-time impedance measurement of an induction heating system. Trans. Korean Inst. Electric. Eng. 71(9), 1230-1236 (2022) https://doi.org/10.5370/KIEE.2022.71.9.1230
- Lee, H.-Y., Park, G.-S.: Power prediction of induction range considering current waveform in time-harmonic finite element simulation. J. Electric. Eng. Technol. 18, 359-365 (2022)
- Sarnago, H., Lucia, O., Burdio, J.M.: A versatile resonant tank identification methodology for induction heating systems. IEEE Trans. Power Electron. 33(3), 1897-1901 (2018) https://doi.org/10.1109/TPEL.2017.2740998
- Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Navarro, D.: Analysis and implementation of FPGA-based online parametric identification algorithms for resonant power converters. IEEE Trans. Ind. Inform. 10(2), 1144-1153 (2014) https://doi.org/10.1109/TII.2013.2294136
- Park, H.-P., Jung, J.-H.: Load-adaptive modulation of a series-resonant inverter for all-metal induction heating applications. IEEE Trans. Ind. Electron. 65(9), 6983-6993 (2018) https://doi.org/10.1109/TIE.2018.2793270
- Millan, I., Burdio, J.M., Acero, J., Lucia, O., Llorente, S.: Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electron. 4(5), 587-592 (2011) https://doi.org/10.1049/iet-pel.2010.0107
- Jeong, S., Park, H. and Jung, J.: Design Methodology of 3 kW Induction Heating System for both Low Resistance and High Resistance Containers in a Single Burner. In 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, pp. 289-295 (2018).https://doi.org/10. 23919/IPEC.2018.8507579 https://doi.org/10.23919/IPEC.2018.8507579