DOI QR코드

DOI QR Code

Experimentally investigation of replaceable reduced beam section utilizing beam splice connection

  • Received : 2023.10.18
  • Accepted : 2024.06.20
  • Published : 2024.07.10

Abstract

This study presents a replaceable reduced beam section (R-RBS) located at the column end in moment resisting frames (MRFs). An end of the R-RBS is connected to column by using end-plate moment connection and the other end of that is connected to main beam with beam splice connection. Therefore, the RBS that is expected to yield under an earthquake can be easily replaceable. Geometry of the RBS and the thickness of the beam splice connection are the prime variables of this study. A total of eight experimental test was carried out to examine the seismic performance of the proposed R-RBS with the connection details. The results obtained from experimental studies demonstrated that plate sizes of the beam splice connection significantly affect the seismic performance of RBSs used in MRFs.

Keywords

Acknowledgement

The paper was supported by the Department of Scientific Research Projects at Necmettin Erbakan University coded with 211219006 and Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-312 dated 20.04.2022).

References

  1. AISC (2016a), AISC 341-16, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA
  2. AISC (2016b), AISC 358-16, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, American Institute of Steel Construction, Chicago, IL, USA
  3. AISC (2016c), AISC 360-16, Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA
  4. AISC 341-16 (2002), Seismic Provisions for Structural Steel Buildings. ANSI/AISC 361-16. American Institute of Steel Construction, Chicago.
  5. Ataollahi, S., Banan, M. R. and Banan, M. R. (2016), "Numerical cyclic behavior of T-RBS: A new steel moment connection", Steel Compos. Struct, 21(6), 1251-1274. https://doi.org/10.12989/scs.2016.21.6.1251
  6. Balut, N. and Gioncu, V. (2003), "Suggestion for an improved 'dog-bone'solution", In Proc., Stessa, 129-134.
  7. Cavallaro, G.F., Francavilla, A.B., Latour, M., Piluso, V. and Rizzano, G. (2018), "Cyclic response of low yielding connections using different friction materials", Soil Dyn. Earthq. Eng., 114, 404-423. https://doi.org/10.1016/j.soildyn.2018.07.041.
  8. Chao, S., Wu, H., Zhou, T., Guo, T. and Wang, C. (2019), "Application of self-centering wall panel with replaceable energy dissipation devices in steel frames", Steel Compos. Struct., 32(2), 265-279. https://doi.org/10.12989/scs.2019.32.2.265.
  9. Di Benedetto, S. Francavilla, A.B., Latour, M., Cavallaro, G.F., Piluso, V. and Rizzano, G. (2020), "Pseudo-dynamic testing of a full-scale two-storey steel building with RBS connections", Eng. Struct., 212, 110494. https://doi.org/10.1016/j.engstruct.2020.110494.
  10. Francavilla, A.B., Latour, M., Piluso, V. and Rizzano, G. (2020), "Design criteria for beam-to-column connections equipped with friction devices", J. Construct. Steel Res., 172, 106240. https://doi.org/10.1016/j.jcsr.2020.106240.
  11. Garoosi, A.R.M., TahamouliRoudsari, M. and Hashemi, B.R. (2018), "Experimental evaluation of rigid connection with reduced section and replaceable fuse", Structures, 16, 390-404. https://doi.org/10.1016/j.istruc.2018.11.010
  12. Guo, Y., Lian, M., Zhang, H. and Cheng, Q. (2022), "Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel", Steel Compos. Struct., 42(6), 827-841. https://doi.org/10.12989/scs.2022.42.6.827.
  13. Hu, Y., Zhao, J., Zhang, D. and Zhang, Y. (2018), "Seismic risk assessment of concrete-filled double-skin steel tube/moment-resisting frames", Earthq. Struct., 14(3), 249. https://doi.org/10.12989/eas.2018.14.3.249.
  14. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  15. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499.
  16. Huang, H., Yao, Y., Zhang, W. and Zhou, L. (2023), "A push-out test on partially encased composite column with different positions of shear studs", Eng. Struct., 289, 116343. https://doi.org/10.1016/j.engstruct.2023.116343.
  17. Kamaludin, P.N.C., Kassem, M.M., Farsangi, E.N., Nazri, F.M. and Yamaguchi, E. (2020), "Seismic resilience evaluation of RC-MRFs equipped with passive damping devices", Earthq. Struct., 18(3), 391. https://doi.org/10.12989/eas.2020.18.3.391.
  18. Latour, M., D'Aniello, M., Zimbru, M., Rizzano, G., Piluso, V. and Landolfo, R. (2018a), "Removable friction dampers for low-damage steel beam-to-column joints", Soil Dyn. Earthq. Eng. 115, 66-81. https://doi.org/10.1016/j.soildyn.2018.08.002.
  19. Latour, M., Piluso, V. and Rizzano, G. (2015), "Free from damage beam-to-column joints: Testing and design of DST connections with friction pads", Eng. Struct, 85, 219-233. https://doi.org/10.1016/j.engstruct.2014.12.019.
  20. Latour, M., Piluso, V. and Rizzano, G. (2018b), "Experimental analysis of beam-to-column joints equipped with sprayed aluminium friction dampers", J. Construct. Steel Res., 146, 33-48. https://doi.org/10.1016/j.jcsr.2018.03.014.
  21. Lemonis, M.E., Asteris, P.G., Zitouniatis, D.G. and Ntasis, G.D. (2019), "Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames", Struct. Eng. Mech., 70(4), 421-429. https://doi.org/10.12989/sem.2019.70.4.421.
  22. Lian, M. (2019), "Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links", Steel Compos. Struct., 30(4), 365-382. https://doi.org/10.12989/scs.2019.30.4.365.
  23. Lian, M., Cheng, Q., Guan, B., Zhang, H. and Su, M. (2020), "Seismic performance of high-strength steel framed-tube structures with bolted web-connected replaceable shear links", Steel Compos. Struct., 37(3), 323. https://doi.org/10.12989/scs.2020.5.37.323.
  24. Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  25. Mahmoudi, F., Dolatshahi, K.M., Mahsuli, M., Nikoukalam, M.T. and Shahmohammadi, A. (2019), "Experimental study of steel moment resisting frames with shear link", J. Construct. Steel Res., 154, 197-208. https://doi.org/10.1016/j.jcsr.2018.11.027.
  26. Mohammadi-Gh, M. and Akrami, V. (2010), "Application of frictional sliding fuse in infilled frames, fuse adjustment and influencing parameters", Struct. Eng. Mech., 36(6), 715-727. https://doi.org/10.12989/sem.2010.36.6.715.
  27. Murray, T.M. and Sumner, E.A. (2003), AISC Steel Design Guide 4, Extended End-Plate Moment Connections, Seismic and Wind Applications. American Institute of Steel Construction, Chicago.
  28. Nikoukalam, M.T. and Dolatshahi, K.M. (2015), "Development of structural shear fuse in moment resisting frames", J. Constr. Steel Res., 114, 349-361. https://doi.org/10.1016/j.jcsr.2015.08.008.
  29. Ozkilic, Y.O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. https://doi.org/10.12989/scs.2020.35.3.353.
  30. Ozkilic, Y.O. (2021a), "The capacities of unstiffened T-stubs with thin plates and large bolts", J. Construct. Steel Res., 186, 106908.
  31. Ozkilic, Y.O. (2021b), "The capacities of thin plated stiffened T-stubs", J. Construct. Steel Res., 186, 106912
  32. Ozkilic, Y.O. (2022a), "Cyclic and monotonic performance of stiffened extended end-plate connections with large-sized bolts and thin end-plates", Bull. Earthq. Eng., 20(13), 7441-7475. https://doi.org/10.1007/s10518-022-01496-8
  33. Ozkilic, Y.O. (2022b), "The effects of stiffener configuration on stiffened T-stubs", Steel Compos. Struct., 44(4), 489.
  34. Ozkilic, Y.O. (2023), "Cyclic and monotonic performance of unstiffened extended end-plate connections having thin end-plates and large-bolts", Eng. Struct., 281, 115794.
  35. Ozkilic, Y.O. and Bozkurt, M.B. (2023), "Numerical validation on novel replaceable reduced beam section connections for moment-resisting frames", Structures, 50, 63-79. https://doi.org/10.1016/j.istruc.2023.02.027
  36. Ozkilic, Y.O. and Topkaya, C. (2021a), "The plastic and the ultimate resistance of four-bolt extended end-plate connections", J. Construct. Steel Res., 181, 106614. https://doi.org/10.1016/j.jcsr.2021.106614.
  37. Ozkilic, Y.O. and Topkaya, C. (2021b), "Extended end-plate connections for replaceable shear links", Eng. Struct., 240, 112385. https://doi.org/10.1016/j.engstruct.2021.112385.
  38. Peng, H., Ou, J. and Mahin, S. (2020), "Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection", Soil Dyn. Earthq. Eng., 133, 106149. https://doi.org/10.1016/j.soildyn.2020.106149.
  39. Plumier, A. (1997), "The dogbone: Back to the future", Eng. J., 34(2), 61-67. https://doi.org/10.62913/engj.v34i2.680
  40. Pongiglione, M., Calderini, C., D'Aniello, M. and Landolfo, R. (2021), "Novel reversible seismic-resistant joint for sustainable and deconstructable steel structures", J. Build. Eng., 35, 101989. https://doi.org/10.1016/j.jobe.2020.101989.
  41. Qi, L., Liu, M., Shen, Z. and Liu, H. (2022), "Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation", Earthq. Struct., 23(2), 183-196. https://doi.org/10.12989/eas.2022.23.2.183.
  42. Richards, P. (2019), "A repairable connection for earthquake-resisting moment frames", Steel Construct., 12, 191-197. https://doi.org/10.1002/stco.201900015.
  43. Rousta, A.M. (2023), "Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers", Struct. Eng. Mech., 87(1), 69-84. https://doi.org/10.12989/sem.2023.87.1.069.
  44. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/sem.2021.80.2.129.
  45. Saleh, A., Zahrai, S.M. and Mirghaderi, S.R. (2016), "Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams", Struct. Eng. Mech., 57(5), 785-808. https://doi.org/10.12989/sem.2016.57.5.785.
  46. Saleh, A., Zahrai, S.M. and Mirghaderi, S.R. (2016), "Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams", Struct. Eng. Mech., 57(5), 785-808. https://doi.org/10.12989/sem.2016.57.5.785.
  47. Shao, F., Jia, L. and Ge, H. (2022), "Brace-type shear fuses for seismic control of long-span three-tower self-anchored suspension bridge", Struct. Eng. Mech., 81(2), 147. https://doi.org/10.12989/sem.2022.81.2.147.
  48. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020), "The effect of RBS connection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct., 34(3), 393-407.
  49. Shen, Y., Christopoulos, C., Mansour, N. and Tremblay, R. (2011), "Seismic design and performance of steel moment-resisting frames with nonlinear replaceable links", J. Struct. Eng., 137(10), 1107-1117. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000359
  50. Sofias, C.E., Kalfas, C.N. and Pachoumis, D.T. (2014), "Experimental and FEM analysis of reduced beam section moment endplate connections under cyclic loading", Eng. Struct., 59, 320-329. https://doi.org/10.1016/j.engstruct.2013.11.010.
  51. Sophianopoulos, D.S. and Deri, A.E. (2011), "Parameters affecting response and design of Steel Moment Frame Reduced Beam Section connections: An overview", Int. J. Steel Struct., 11, 133-144. https://doi.org/10.1007/s13296-011-2003-5
  52. Swati, A.K. (2013), "A study of reduced beam section profiles using finite element analysis", IOSR J. Mech. Civil Eng., 6(4), 1-6.
  53. Swati, A.K. and Gaurang, V. (2014), "Study of steel moment connection with and without reduced beam section", Case Studies Struct. Eng., 1(1), 26-31. https://doi.org/10.1016/j.csse.2014.04.001.
  54. Yang, L., Ye, M., Huang, Y. and Dong, J. (2023), "Study on mechanical properties of displacement-amplified mild steel bar joint damper", Iran. J. Sci. Technol. Transact. Civil Eng., https://doi.org/10.1007/s40996-023-01268-7.
  55. Yang, T.S. and Popov, E.P. (1995), "Experimental and analytical studies of steel connections and senergy dissipators", Earthq. Eng. Res. Center. Report No. UCB/EERC-95/13.
  56. Yao, Y., Zhou, L., Huang, H., Chen, Z. and Ye, Y. (2023), "Cyclic performance of novel composite beam-to-column connections with reduced beam section fuse elements", Structures, 50, 842-858. https://doi.org/10.1016/j.istruc.2023.02.054.
  57. Yu, H., Liang, X., Yu, J., Li, P., Wang, W. and Wang, Q. (2022), "Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams", Steel Compos. Struct., 45(2), 293-303. https://doi.org/10.12989/scs.2022.45.2.293.
  58. Zareia, A., Vaghefi, M. and Fiouz, A.R. (2016), "Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section", Struct. Eng. Mech., 57(3), 507-528. https://doi.org/10.12989/sem.2016.57.3.507.
  59. Zhang, J. and Zhang, C. (2023), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988.