Acknowledgement
This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).
References
- Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74(1), 83-90. https://doi.org/10.12989/sem.2020.74.1.083.
- AitAtmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. http://dx.doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 365-377. https://doi.org/10.1007/s00366-020-01070-3.
- Al Rjoub, Y.S. and Hamad, A.G. (2017), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civ. Eng., 21,792-806. https://doi.org/10.1007/s12205-016-0149-6.
- Al Said-Alwan, H.H. and Avcar, M., (2020), "Analytical solution of free vibration of FG beam utilizing different types of beams theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://dx.doi.org/10.12989/scs.2019.30.6.603.
- Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2017), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
- Barati, M.R. (2017), "Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading", Appl. Phys. A., 123-332. https://doi.org/10.1007/s00339-017-0908-3.
- Bouazza, M., Zenkour, A.M. and Benseddiq, N. (2018),"Effect of material composition on bending analysis of FG plates via a two-variable refined hyperbolic theory", Arch. Mech., 70(2), 107-129.
- Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
- Chen,Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher order shear deformation theory", Compos. Part B: Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
- Ebrahimi, F. and Barati, M.R, (2017), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation", Adv. Nano Res., 5(4), 313-336. http://dx.doi.org/10.12989/anr.2017.5.4.313.
- Ebrahimi, F. and Salari, E. (2018), "Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams", Adv. Nano Res., 6(4), 77-397. http://dx.doi.org/10.12989/anr.2018.6.4.377.
- Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153-154, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
- Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on bending, buckling and vibration of FG beam resting on elastic foundation using a new refined Quasi-3d theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. B: Eng. 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.
- Ghiasian, S.E., Kiani, Y and Eslami, M.R. (2015), "Nonlinear thermal dynamic buckling of FGM beams", Eur. J. Mech. A Solids, 54, 232-242. https://doi.org/10.1016/j.euromechsol.2015.07.004.
- Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nano beams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.
- Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), "Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment", Adv. Acoust. Vib,, 2019, 17, https://doi.org/10.1155/2019/7986569.
- Jin, C. and Wang, X. (2015), "Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method", Compos. Struct., 125, 41-50. https://doi.org/10.1016/j.compstruct.2015.01.039.
- Jin, Q. (2021), "Interlaminar stress analysis of functionally graded graphene reinforced composite laminated plates based on a refined plate theory", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2021.1919805.
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. http://dx.doi.org/10.12989/scs.2015.18.3.693.
- Karamanli, A. and Vo, T.P. (2021), "A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory", Compos. Struct., 257, 113066. https://doi.org/10.1016/j.compstruct.2020.113066.
- Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
- Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. http://dx.doi.org/10.1016/j.ijmecsci.2017.01.011.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM" Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
- Madenci, E. and Ozutok, A. (2017), "Variational approximate and mixed-finite element solution for static analysis of laminated composite plates", Solid State Phenomena, 267, 35-39. https://doi.org/10.4028/www.scientific.net/SSP.267.35.
- Madenci, E. and Ozutok, A., (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
- Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
- Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compo. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
- Melaibari, A., Rasha Abo-bakr, M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alexandria Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
- Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/SCS.2020.34.1.141.
- Nguyen, T.-K., Vo, T.P., Nguyen, B.-D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. http://dx.doi.org/10.1016/j.compstruct.2015.11.074.
- Nguyen, T.G. (2021), "Free vibration exploration of rotating FGM porosity beams under axial load considering the initial geometrical imperfection", Mathem. Prob. Eng., https://doi.org/10.1155/2021/5519946.
- Osofero, A.I., Vo, T.P., Nguyen, T.-K. and Lee, J. (2016), "Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3d theories", J. Sandw. Struct. Mater., 18(1), 3-29. https://doi.org/10.1177/1099636215582217.
- Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Paul, A. and Das, D. (2016), "Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness", Eng. Sci. Technol. Int. J., 19 1608-1625. http://dx.doi.org/10.1016/j.jestch.2016.05.014.
- Pham, Q-H., Pham, T-D., Trinh, Q.V. and Phan, D-H., (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge‑based smoothed MITC3 (ES‑MITC3) finite elements", Eng. Comput. 36, 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
- Pitakthapanaphong, S. and Busso, E.P. (2002), "Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients", J. Mech. Phys. Solids, 50, 695-716. https://doi.org/10.1016/s0022-5096(01)00105-3.
- Pradhan K.K. and Chakraverty, S. (2017), "Natural frequencies of shear deformed functionally graded beams using inverse trigonometric functions", J. Braz. Soc. Mech. Sci. Eng., 39, 3295-3313. https://doi.org/10.1007/s40430-016-0701-9.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 75(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225.
- Sayyad, A.S. and Ghugal, Y.M. (2018), "Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams", Asian J. Civil Eng., 19, 607-623. https://doi.org/10.1007/s42107-018-0046-z.
- Selmi, A. (2020), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/sss.2020.25.6.669.
- Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
- Shokouhifard, V., Mohebpour, S., Malekzadeh, P. and Alighanbari, H., (2020), "An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations", Steel Compos. Struct., 35(1), 61-76. https://doi.org/10.12989/scs.2020.35.1.061.
- Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of fuctionally graded sandwich beam with porous core and nanocomposite layer", Steel Compos. Struct., 36(1), 1-16 http://dx.doi.org/10.12989/scs.2020.36.1.001.
- Singh, S.J. and Harsha, S.P. (2019), "Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading", J. Mech. Sci. Technol., 33(4), 1-7. https://doi.org/10.1007/s12206-019-0328-8.
- Sofiyev, A.H., Deniz, A., Akcay, I.H. and Yusufogclu, E. (2006), "The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load", Acta Mechanica, 183, 129-144. https://doi.org/10.1007/s00707-006-0328-5.
- Su, Z., Wang, L., Sun, K. and Sun, J. (2020), "Transverse shear and normal deformation effects on vibration behaviors of functionally graded micro-beams", Appl. Math. Mech. -Engl. Ed., 41(9), 1303-1320. https://doi.org/10.1007/s10483-020-2662-6.
- Taha, M.H. and Abdeen, M.A.M. (2016), "Analytical solutions for Timoshenko beam-columns on elastic foundations", Arab. J. Sci. Eng., 41, 4053. https://doi.org/10.1007/s13369-016-2071-0.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wattanasakulpong, N. and Ungbhakorn, V, (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Xie, K., Wang, Y. and Fu, T. (2020), "Nonlinear vibration analysis of third-order shear deformable functionally graded beams by a new method based on direct numerical integration technique", Int. J. Mech. Mater. Des., 16, 839-855. https://doi.org/10.1007/s10999-020-09493-y.
- Yas, M.H., Kamarian, S. and Pourasghar, A. (2017), "Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method", Ann. Solid Struct. Mech., 9, 1-11. https://doi.org/10.1007/s12356-017-0046-9.