DOI QR코드

DOI QR Code

A comprehensive computational approach to assess the influence of the material composition on vibration, bending and buckling response of FG beam lying on viscoelastic foundation

  • Brahim Laoud (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Samir Benyoucef (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Attia Bachiri (Departement genie civil, faculte de genie civil et d'architecture, Universite Ammar Telidji Laghouat) ;
  • Rabbab Bachir Bouiadjra (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, Lebanese American University) ;
  • Mahmoud M Selim (Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University) ;
  • Hosam A. Saad (Department of Chemistry, College of Science, Taif University)
  • Received : 2021.05.04
  • Accepted : 2024.06.25
  • Published : 2024.07.10

Abstract

This paper proposes an analytical solution for the free vibration, bending and buckling a functionally graded (FG) beam resting on viscoelastic foundation. The materials characteristics of the FG beam are considered to be varying across the thickness according several power law functions. The governing equations are found analytically using a quasi-3D model that contains undetermined integral forms and involves few unknowns to derive. Navier's method for simply supported beam is employed to solve the problem. Numerical examples are presented and studied to demonstrate the accuracy and effectiveness of the proposed model. Then, a detailed parametric study is presented in the form of tables and graphs to study and analyze the effects of the different parameters on the response of FG beams with different material compositions resting on a viscoelastic foundation.

Keywords

Acknowledgement

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).

References

  1. Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74(1), 83-90. https://doi.org/10.12989/sem.2020.74.1.083.
  2. AitAtmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  3. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. http://dx.doi.org/10.12989/scs.2015.19.6.1421.
  4. Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.
  5. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 365-377. https://doi.org/10.1007/s00366-020-01070-3.
  6. Al Rjoub, Y.S. and Hamad, A.G. (2017), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civ. Eng., 21,792-806. https://doi.org/10.1007/s12205-016-0149-6.
  7. Al Said-Alwan, H.H. and Avcar, M., (2020), "Analytical solution of free vibration of FG beam utilizing different types of beams theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.
  8. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://dx.doi.org/10.12989/scs.2019.30.6.603.
  10. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2017), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  11. Barati, M.R. (2017), "Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading", Appl. Phys. A., 123-332. https://doi.org/10.1007/s00339-017-0908-3.
  12. Bouazza, M., Zenkour, A.M. and Benseddiq, N. (2018),"Effect of material composition on bending analysis of FG plates via a two-variable refined hyperbolic theory", Arch. Mech., 70(2), 107-129.
  13. Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
  14. Chen,Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher order shear deformation theory", Compos. Part B: Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
  15. Ebrahimi, F. and Barati, M.R, (2017), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation", Adv. Nano Res., 5(4), 313-336. http://dx.doi.org/10.12989/anr.2017.5.4.313.
  16. Ebrahimi, F. and Salari, E. (2018), "Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams", Adv. Nano Res., 6(4), 77-397. http://dx.doi.org/10.12989/anr.2018.6.4.377.
  17. Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153-154, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  18. Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on bending, buckling and vibration of FG beam resting on elastic foundation using a new refined Quasi-3d theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
  19. Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
  20. Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. B: Eng. 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.
  21. Ghiasian, S.E., Kiani, Y and Eslami, M.R. (2015), "Nonlinear thermal dynamic buckling of FGM beams", Eur. J. Mech. A Solids, 54, 232-242. https://doi.org/10.1016/j.euromechsol.2015.07.004.
  22. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nano beams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.
  23. Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), "Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment", Adv. Acoust. Vib,, 2019, 17, https://doi.org/10.1155/2019/7986569.
  24. Jin, C. and Wang, X. (2015), "Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method", Compos. Struct., 125, 41-50. https://doi.org/10.1016/j.compstruct.2015.01.039.
  25. Jin, Q. (2021), "Interlaminar stress analysis of functionally graded graphene reinforced composite laminated plates based on a refined plate theory", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2021.1919805.
  26. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. http://dx.doi.org/10.12989/scs.2015.18.3.693.
  27. Karamanli, A. and Vo, T.P. (2021), "A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory", Compos. Struct., 257, 113066. https://doi.org/10.1016/j.compstruct.2020.113066.
  28. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  29. Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. http://dx.doi.org/10.1016/j.ijmecsci.2017.01.011.
  30. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  31. Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM" Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
  32. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  33. Madenci, E. and Ozutok, A. (2017), "Variational approximate and mixed-finite element solution for static analysis of laminated composite plates", Solid State Phenomena, 267, 35-39. https://doi.org/10.4028/www.scientific.net/SSP.267.35.
  34. Madenci, E. and Ozutok, A., (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  35. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  36. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  37. Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compo. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
  38. Melaibari, A., Rasha Abo-bakr, M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alexandria Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
  39. Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/SCS.2020.34.1.141.
  40. Nguyen, T.-K., Vo, T.P., Nguyen, B.-D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. http://dx.doi.org/10.1016/j.compstruct.2015.11.074.
  41. Nguyen, T.G. (2021), "Free vibration exploration of rotating FGM porosity beams under axial load considering the initial geometrical imperfection", Mathem. Prob. Eng., https://doi.org/10.1155/2021/5519946.
  42. Osofero, A.I., Vo, T.P., Nguyen, T.-K. and Lee, J. (2016), "Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3d theories", J. Sandw. Struct. Mater., 18(1), 3-29. https://doi.org/10.1177/1099636215582217.
  43. Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
  44. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  45. Paul, A. and Das, D. (2016), "Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness", Eng. Sci. Technol. Int. J., 19 1608-1625. http://dx.doi.org/10.1016/j.jestch.2016.05.014.
  46. Pham, Q-H., Pham, T-D., Trinh, Q.V. and Phan, D-H., (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge‑based smoothed MITC3 (ES‑MITC3) finite elements", Eng. Comput. 36, 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
  47. Pitakthapanaphong, S. and Busso, E.P. (2002), "Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients", J. Mech. Phys. Solids, 50, 695-716. https://doi.org/10.1016/s0022-5096(01)00105-3.
  48. Pradhan K.K. and Chakraverty, S. (2017), "Natural frequencies of shear deformed functionally graded beams using inverse trigonometric functions", J. Braz. Soc. Mech. Sci. Eng., 39, 3295-3313. https://doi.org/10.1007/s40430-016-0701-9.
  49. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 75(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225.
  50. Sayyad, A.S. and Ghugal, Y.M. (2018), "Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams", Asian J. Civil Eng., 19, 607-623. https://doi.org/10.1007/s42107-018-0046-z.
  51. Selmi, A. (2020), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/sss.2020.25.6.669.
  52. Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
  53. Shokouhifard, V., Mohebpour, S., Malekzadeh, P. and Alighanbari, H., (2020), "An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations", Steel Compos. Struct., 35(1), 61-76. https://doi.org/10.12989/scs.2020.35.1.061.
  54. Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of fuctionally graded sandwich beam with porous core and nanocomposite layer", Steel Compos. Struct., 36(1), 1-16 http://dx.doi.org/10.12989/scs.2020.36.1.001.
  55. Singh, S.J. and Harsha, S.P. (2019), "Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading", J. Mech. Sci. Technol., 33(4), 1-7. https://doi.org/10.1007/s12206-019-0328-8.
  56. Sofiyev, A.H., Deniz, A., Akcay, I.H. and Yusufogclu, E. (2006), "The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load", Acta Mechanica, 183, 129-144. https://doi.org/10.1007/s00707-006-0328-5.
  57. Su, Z., Wang, L., Sun, K. and Sun, J. (2020), "Transverse shear and normal deformation effects on vibration behaviors of functionally graded micro-beams", Appl. Math. Mech. -Engl. Ed., 41(9), 1303-1320. https://doi.org/10.1007/s10483-020-2662-6.
  58. Taha, M.H. and Abdeen, M.A.M. (2016), "Analytical solutions for Timoshenko beam-columns on elastic foundations", Arab. J. Sci. Eng., 41, 4053. https://doi.org/10.1007/s13369-016-2071-0.
  59. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  60. Wattanasakulpong, N. and Ungbhakorn, V, (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  61. Xie, K., Wang, Y. and Fu, T. (2020), "Nonlinear vibration analysis of third-order shear deformable functionally graded beams by a new method based on direct numerical integration technique", Int. J. Mech. Mater. Des., 16, 839-855. https://doi.org/10.1007/s10999-020-09493-y.
  62. Yas, M.H., Kamarian, S. and Pourasghar, A. (2017), "Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method", Ann. Solid Struct. Mech., 9, 1-11. https://doi.org/10.1007/s12356-017-0046-9.