DOI QR코드

DOI QR Code

Predicting strength and strain of circular concrete cross-sections confined with FRP under axial compression by utilizing artificial neural networks

  • Yaman S. S. Al-Kamaki (Highways and Bridges Engineering, Technical College of Engineering, Duhok Polytechnic University (DPU)) ;
  • Abdulhameed A. Yaseen (Civil Engineering Department, College of Engineering, University of Duhok (UoD)) ;
  • Mezgeen S. Ahmed (Highways and Bridges Engineering, Technical College of Engineering, Duhok Polytechnic University (DPU)) ;
  • Razaq Ferhadi (College of Engineering, The American University of Kurdistan (AUK)) ;
  • Mand K. Askar (Highways and Bridges Engineering, Technical College of Engineering, Duhok Polytechnic University (DPU))
  • 투고 : 2022.11.19
  • 심사 : 2023.12.26
  • 발행 : 2024.07.25

초록

One well-known reason for using Fiber Reinforced Polymer (FRP) composites is to improve concrete strength and strain capacity via external confinement. Hence, various studies have been undertaken to offer a good illustration of the response of FRP-wrapped concrete for practical design intents. However, in such studies, the strength and strain of the confined concrete were predicted using regression analysis based on a limited number of test data. This study presents an approach based on artificial neural networks (ANNs) to develop models to predict the strength and strain at maximum stress enhancement of circular concrete cross-sections confined with different FRP types (Carbone, Glass, Aramid). To achieve this goal, a large test database comprising 493 axial compression experiments on FRP-confined concrete samples was compiled based on an extensive review of the published literature and used to validate the predicted artificial intelligence techniques. The ANN approach is currently thought to be the preferred learning technique because of its strong prediction effectiveness, interpretability, adaptability, and generalization. The accuracy of the developed ANN model for predicting the behavior of FRP-confined concrete is commensurate with the experimental database compiled from published literature. Statistical measures values, which indicate a better fit, were observed in all of the ANN models. Therefore, compared to existing models, it should be highlighted that the newly developed models based on FRP type are remarkably accurate.

키워드

참고문헌

  1. Adeli, H. and Park, H.S. (1995), "Counterpropagation neural networks in structural engineering". J. Struct. Eng., 121(8), 1205-1212. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:8(1205). 
  2. Ahmad, S.H., Khaloo, A.R. and Irshaid, A. (1991), "Behavior of concrete spirally confined by fiberglass filaments", Mag. Concrete Res., 43(156), 143-148. 
  3. Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2014), "Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load", Arch. Civil Mech. Eng., 14(3), 510-517. https://doi.org/10.1016/j.acme.2014.01.006. 
  4. Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017), "ANN model for predicting the compressive strength of circular steel-confined concrete", Int. J. Civil Eng., 15(2), 213-221. https://doi.org/10.1007/s40999-016-0096-0. 
  5. Aire, C., Gettu, R. and Casas, J. (2001), "Study of the compressive behavior of concrete confined by fiber reinforced composites", Carbon, 1, 239-243. 
  6. Al-Kamaki, Y., Al-Mahaidi, R. and Bennetts, I. (2017), "Strength enhancement of fire-damaged RC circular bridge columns using CFRP fabrics", 2017 10th Austroads Bridge Conference, Melbourne, Victoria, Australia, April. 
  7. Al-Kamaki, Y.S.S., Al-Mahaidi, R., Al-Mosawe, A. and Bennetts, I. (2020), "Experimental and numerical study on wrapping concrete cylinders post heating and cooling under preload using CFRP fabrics", Struct., 23, 425-436. https://doi.org/10.1016/j.istruc.2019.10.005. 
  8. Almusallam, T.H. (2007), "Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates", Compos. Part B: Eng., 38(5-6), 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021. 
  9. Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011. 
  10. Au, C. and Buyukozturk, O. (2005), "Effect of fiber orientation and ply mix on fiber reinforced polymer-confined concrete", J. Compos. Constr., 9(5), 397-407. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(397). 
  11. Bakhshi, M., Abdollahi, B., Motavalli, M., Shekarchizade, M. and Ghalibafian, M. (2007), "The experimental modeling of GFRP confined concrete cylinders subjected to axial loads", Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Patras, Greece, July. 
  12. Bani-Hani, K. and Ghaboussi, J. (1998), "Nonlinear structural control using neural networks", J. Eng. Mech., 124(3), 319-327. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(319). 
  13. Benzaid, R., Mesbah, H. and Nasr Eddine, C. (2010), "FRP-confined concrete cylinders: Axial compression experiments and strength model", J. Reinf. Plast. Compos., 29(16), 2469-2488. https://doi.org/10.1177/0731684409355199. 
  14. Berthet, J.F., Ferrier, E. and Hamelin, P. (2005), "Compressive behavior of concrete externally confined by composite jackets. Part A: Experimental study", Constr. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012. 
  15. Bullo, S. (2003), "Experimental study of the effects of the ultimate strain of fiber reinforced plastic jackets on the behavior of confined concrete", Composites in Construction International Conference, Cosenza, Italy, September. 
  16. Carey, S.A. and Harries, K.A. (2005), "Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets", ACI Struct. J., 102(4), 596-604. 
  17. Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An artificial neural networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047. 
  18. Comert, M., Goksu, C. and Ilki, A. (2009), "Towards a tailored stress-strain behavior for FRP confined low strength concrete", Proceedings of the 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Sydney, Australia, July. 
  19. Cui, C. and Sheikh, S.A. (2010), "Experimental study of normal-and high-strength concrete confined with fiber-reinforced polymers", J. Compos. Constr., 14(5), 553-561. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116. 
  20. Dai, J.G., Bai, Y.L. and Teng, J.G. (2011), "Behavior and modeling of concrete confined with FRP composites of large deformability", J. Compos. Constr., 15(6), 963-973. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000230. 
  21. De Lorenzis, L., Micelli, F. and La Tegola, A. (2002), "Influence of specimen size and resin type on the behaviour of FRP-confined concrete cylinders", 1st International Conference on Advanced Polymer Composites for Structural Applications in Construction, Southampton, UK, April. 
  22. Demers, M. and Neale, K.W. (1994), "Strengthening of concrete columns with unidirectional composite sheets", Develop. Short Medium Span Bridge Eng., 94, 895-905. 
  23. Dias Da Silva, V. and Santos, J. (2001), "Strengthening of axially loaded concrete cylinders by surface composites", Compos. Constr., 2001, 257-262. 
  24. Djafar-Henni, I. and Kassoul, A. (2018), "Stress-strain model of confined concrete with Aramid FRP wraps", Constr. Build. Mater., 186, 1016-1030. https://doi.org/10.1016/j.conbuildmat.2018.08.013. 
  25. Elkordy, M.F., Chang, K.C. and Lee, G.C. (1993), "Neural networks trained by analytically simulated damage states", J. Comput. Civil Eng., 7(2), 130-145. https://doi.org/10.1061/(ASCE)0887-3801(1993)7:2(130). 
  26. Elsanadedy, H.M., Al-Salloum, Y.A., Abbas, H. and Alsayed, S.H. (2012), "Prediction of strength parameters of FRP-confined concrete", Compos. Part B: Eng., 43(2), 228-239. https://doi.org/10.1016/j.compositesb.2011.08.043. 
  27. Fakharifar, M. and Chen, G. (2016), "Compressive behavior of FRP-confined concrete-filled PVC tubular columns", Compos. Struct., 141, 91-109. https://doi.org/10.1016/j.compstruct.2016.01.004. 
  28. Fallah Pour, A., Ozbakkaloglu, T. and Vincent, T. (2018), "Simplified design-oriented axial stress-strain model for FRP-confined normal- and high-strength concrete", Eng. Struct., 175, 501-516. https://doi.org/10.1016/j.engstruct.2018.07.099. 
  29. Fardis, M.N. and Khalili, H.H. (1982), "FRP-encased concrete as a structural material", Mag. Concrete Res., 34(121), 191-202. https://doi.org/10.1680/macr.1982.34.121.191. 
  30. Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering. I: Principles and understanding", J. Comput. Civil Eng., 8(2), 131-148. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131). 
  31. Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div., 93(5), 113-124. https://doi.org/10.1061/JSDEAG.0001761. 
  32. George, D. and Mallery, P. (2019), IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference, Routledge, London, UK. 
  33. Ghanem, S.Y. and Elgazzar, H. (2021), "Predicting the behavior of reinforced concrete columns confined by fiber reinforced polymers using data mining techniques", SN Appl. Sci., 3(2), 1-13. https://doi.org/10.1007/s42452-020-04136-5. 
  34. Green, M.F., Bisby, L.A., Fam, A.Z. and Kodur, V.K.R. (2006), "FRP confined concrete columns: Behaviour under extreme conditions", Cement Concrete Compos., 28(10), 928-937. https://doi.org/10.1016/j.cemconcomp.2006.07.008. 
  35. Guo, Y.C., Gao, W.Y., Zeng, J.J., Duan, Z.J., Ni, X.Y. and Peng, K.D. (2019), "Compressive behavior of FRP ring-confined concrete in circular columns: Effects of specimen size and a new design-oriented stress-strain model", Constr. Build. Mater., 201, 350-368. https://doi.org/10.1016/j.conbuildmat.2018.12.183. 
  36. Hadi, M.N.S. (2003), "Neural networks applications in concrete structures", Comput. Struct., 81(6), 373-381. https://doi.org/10.1016/S0045-7949(02)00451-0. 
  37. Harries, K.A. and Kharel, G. (2002), "Behavior and modeling of concrete subject to variable confining pressure", ACI Mater. J., 99(2), 180-189. https://doi.org/10.14359/11711. 
  38. Howie, I. and Karbhari, V.M. (1995), "Effect of tow sheet composite wrap architecture on strengthening of concrete due to confinement: I-Experimental studies", J. Reinf. Plast. Compos., 14(9), 1008-1030. https://doi.org/10.1177/073168449501400906. 
  39. Huang, L., Gao, C., Yan, L., Kasal, B., Ma, G. and Tan, H. (2016), "Confinement models of GFRP-confined concrete: Statistical analysis and unified stress-strain models", J. Reinf. Plast. Compos., 35(11), 867-891. https://doi.org/10.1177/0731684416630609. 
  40. Jalal, M. and Ramezanianpour, A.A. (2012), "Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks", Compos. Part B: Eng., 43(8), 2990-3000. https://doi.org/10.1016/j.compositesb.2012.05.044. 
  41. Jiang, T. and Teng, J. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010. 
  42. Jiawei, H., Micheline, K. and Jian, P. (2016), Data Mining Concepts and Techniques, Morgan Kaufmann Publishers, Burlington, MA, USA.
  43. Kamgar, R., Naderpour, H., Komeleh, H.E., Jakubczyk-Galczynska, A. and Jankowski, R. (2020), "A proposed soft computing model for ultimate strength estimation of FRP-confined concrete cylinders", Appl. Sci., 10(5), 1769. https://doi.org/10.3390/app10051769. 
  44. Kantardzic, M. (2011), Data Mining: Concepts, Models, Methods, and Algorithms, John Wiley & Sons Inc., Hoboken, NJ, USA.
  45. Keshavarz, Z. and Torkian, H. (2018), "Application of ANN and ANFIS models in determining compressive strength of concrete", J. Soft Comput. Civil Eng., 2(1), 62-70. https://doi.org/10.22115/scce.2018.51114. 
  46. Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9. 
  47. Khademi, F., Jamal, S.M., Deshpande, N. and Londhe, S. (2016), "Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression", Int. J. Sustainab. Built Environ., 5(2), 355-369. https://doi.org/10.1016/j.ijsbe.2016.09.003. 
  48. Khan, Q.S., Sheikh, M.N. and Hadi, M.N. (2019), "Predicting strength and strain enhancement ratios of circular fiber-reinforced polymer tube confined concrete under axial compression using artificial neural networks", Adv. Struct. Eng., 22(6), 1426-1443. https://doi.org/10.1177/1369433218815229. 
  49. Kharel, G. (2001), "Behavior and modeling of variably confined concrete", Doctoral Dissertation, University of South Carolina, Columbia, SC, USA. 
  50. Kono, S., Inazumi, M. and Kaku, T. (1998), "Evaluation of confining effects of CFRP sheets on reinforced concrete members", 2nd International Conference on Composites in Infrastructurenational Science Foundation, Tucson, AZ, USA, January. 
  51. Krogh, A. and Vedelsby, J. (1994), "Neural network ensembles, cross validation, and active learning", Advances in Neural Information Processing Systems 7, Proceedings of the 1994 Conference, Denver, CO, USA, November-December. 
  52. Kshirsagar, S., Lopez-Anido, R.A. and Gupta, R.K. (2000), "Environmental aging of fiber-reinforced polymer-wrapped concrete cylinders", Mater. J., 97(6), 703-712. https://doi.org/10.14359/9985. 
  53. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X. 
  54. Lam, L. and Teng, J.G. (2004), "Ultimate condition of fiber reinforced polymer-confined concrete", J. Compos. Constr., 8(6), 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539). 
  55. Lam, L., Teng, J., Cheung, C. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concrete compos., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007. 
  56. Lim, J.C. and Ozbakkaloglu, T. (2014a), "Confinement model for FRP-confined high-strength concrete", J. Compos. Constr., 18(4), 04013058. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000376. 
  57. Lim, J.C. and Ozbakkaloglu, T. (2014b), "Influence of silica fume on stress-strain behavior of FRP-confined HSC", Constr. Build. Mater., 63, 11-24. https://doi.org/10.1016/j.conbuildmat.2014.03.044. 
  58. Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/j.compstruc.2015.09.005. 
  59. Mandal, S., Hoskin, A. and Fam, A. (2005), "Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets", ACI Struct. J., 102(3), 383. 
  60. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804). 
  61. Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neural Comput. Applicat., 29(3), 873-888. https://doi.org/10.1007/s00521-016-2492-4. 
  62. Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4. 
  63. Mastrapa, J. (1997), "Effect of construction bond on confinement with fiber composites", Master Thesis, University of Central Florida, Orlando, FL, USA. 
  64. Matthys, S., Taerwe, L. and Audenaert, K. (1999), "Tests on axially loaded concrete columns confined by fiber reinforced polymer sheet wrapping", ACI Spec. Publ., 188, 217-228. https://doi.org/10.14359/5624. 
  65. Matthys, S., Toutanji, H. and Taerwe, L. (2006), "Stress-strain behavior of large-scale circular columns confined with FRP composites", J. Struct. Eng., 132(1), 123-133. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(123). 
  66. Micelli, F. and Modarelli, R. (2013), "Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete", Compos. Part B: Eng., 45(1), 1420-1431. https://doi.org/10.1016/j.compositesb.2012.09.055. 
  67. Micelli, F., Myers, J. and Murthy, S. (2001), "Effect of environmental cycles on concrete cylinders confined with FRP", Proceedings of CCC2001 International Conference on Composites in Construction, Porto, Portugal, October. 
  68. Mirmiran, A. (1997), "Analytical and experimental investigation of reinforced concrete columns encased in fiberglass tubular jacket and use of fiber jacket for pile splicing", WPI 0510700; Florida Department of Transportation, Tallahassee, FL, USA. 
  69. Mirmiran, A., Shahawy, M., Samaan, M., El Echary, H., Mastrapa, J.C. and Pico, O. (1998), "Effect of column parameters on FRP-confined concrete", J. Compos. Constr., 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175). 
  70. Modarelli, R., Micelli, F. and Manni, O. (2005), "FRP-confinement of hollow concrete cylinders and prisms", Proceedings of the 7th International Symposium on Fiber Reinforced Polymer Reinforcement of Reinforced Concrete Structures, Kansas City, MO, USA, November. 
  71. Mohanty, M.D. and Mohanty, M.N. (2022), "Chapter 5 - Verbal sentiment analysis and detection using recurrent neural network", Advanced Data Mining Tools and Methods for Social Computing, Academic Press, Cambridge, MA, USA. 
  72. Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008. 
  73. Naderpour, H., Nagai, K., Fakharian, P. and Haji, M. (2019), "Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods", Compos. Struct., 215, 69-84. https://doi.org/10.1016/j.compstruct.2019.02.048. 
  74. Naderpour, H., Rafiean, A.H. and Fakharian, P. (2018), "Compressive strength prediction of environmentally friendly concrete using artificial neural networks", J. Build. Eng., 16, 213-219. https://doi.org/10.1016/j.jobe.2018.01.007. 
  75. Nanni, A. and Bradford, N.M. (1995), "FRP jacketed concrete under uniaxial compression", Constr. Build. Mater., 9(2), 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y. 
  76. Ozbakkaloglu, T. and Akin, E. (2012), "Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression", J. Compos. Constr., 16(4), 451-463. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000273. 
  77. Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005. 
  78. Pessiki, S., Harries, K.A., Kestner, J.T., Sause, R. and Ricles, J.M. (2001), "Axial behavior of reinforced concrete columns confined with FRP jackets", J. Compos. Constr., 5(4), 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237). 
  79. Pham, T.M. and Hadi, M.N.S. (2013), "Strain estimation of CFRP-confined concrete columns using energy approach", J. Compos. Constr., 17(6), 04013001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000397. 
  80. Pham, T.M. and Hadi, M.N.S. (2014), "Stress prediction model for FRP confined rectangular concrete columns with rounded corners", J. Compos. Constr., 18(1), 04013019. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000407. 
  81. Picher, F., Rochette, P. and Labossie'Re, P. (1996), Confinement of Concrete Cylinders with CFRP, Tucson, AZ, USA. 
  82. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", BULLETIN No. 185; University of Illinois at Urbana Champaign, Champaign, IL, USA. 
  83. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1929), "Failure of plain and spirally reinforced concrete in compression", Bulletin; No. 190; Engineering Experimental Station, University of Illinois at Urbana Champaign, Champaign, IL, USA. 
  84. Rochette, P. and Labossiere, P. (2000), "Axial testing of rectangular column models confined with composites", J. Compos. Constr., 4(3), 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129). 
  85. Rousakis, T. and Tepfers, R. (2004), "Behavior of concrete confined by high E-modulus carbon FRP sheets, subjected to monotonic and cyclic axial compressive load", Nordic Concrete Res. Publ., 31, 73. 
  86. Saadatmanesh, H., Ehsani, M.R. and Li, M.W. (1994), "Strength and ductility of concrete columns externally reinforced with fiber composite straps", ACI Struct. J., 91(4), 434-447. 
  87. Shahawy, M., Mirmiran, A. and Beitelman, T. (2000), "Tests and modeling of carbon-wrapped concrete columns", Compos. Part B: Eng., 31(6-7), 471-480. https://doi.org/10.1016/S1359-8368(00)00021-4. 
  88. Shehata, I.A.E.M., Carneiro, L.A.V. and Shehata, L.C.D. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct. Mater. Constr., 34(245), 50-58. https://doi.org/10.1007/BF02482090. 
  89. Silva, M.A. and Rodrigues, C.C. (2006), "Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP", J. Mater. Civil Eng., 18(3), 334-342. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(334). 
  90. Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24(5), 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037. 
  91. Suter, R. (2001), "Confinement of concrete columns with FRP sheets", The Proceedings of the 5th International Conference on Fibre Reinforced Plastics for Reinforced Concrete Structures, Cambridge, UK, July. 
  92. Teng, J., Chen, J.F., Smith, S.T. and Lam, L. (2002), FRP: Strengthened RC Structures, John Wiley & Sons Ltd, Chichester, UK. 
  93. Teng, J.G., Yu, T., Wong, Y.L. and Dong, S.L. (2007), "Hybrid FRP-concrete-steel tubular columns: Concept and behavior", Constr. Build. Mater., 21(4), 846-854. https://doi.org/10.1016/j.conbuildmat.2006.06.017. 
  94. Theriault, M., Neale, K.W. and Claude, S. (2004), "Fiber-reinforced polymer-confined circular concrete columns: Investigation of size and slenderness effects", J. Compos. Constr., 8(4), 323-331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323). 
  95. Vincent, T. and Ozbakkaloglu, T. (2013), "Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete", Constr. Build. Mater., 47, 814-826. https://doi.org/10.1016/j.conbuildmat.2013.05.085. 
  96. Wang, L.M. and Wu, Y.F. (2008), Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Engineering structures 30, 2, 493-505. 
  97. Wang, X., Liu, Y. and Xin, H. (2021), Bond Strength Prediction of Concrete-Encased Steel Structures Using Hybrid Machine Learning Method, Elsevier, Amsterdam, Netherlands 
  98. Watanabe, K., Nakamura, H., Honda, Y., Toyoshima, M., Iso, M., Fujimaki, T., Kaneto, M. and Shirai, N. (1997), "Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression", Non-Metallic (FRP) Reinforcement for Concrete Structures. Japan Concrete Institute: Proceedings of the Third International Symposium, Sapporo, Japan, October. 
  99. Wong, Y., Yu, T., Teng, J. and Dong, S. (2008), "Behavior of FRP-confined concrete in annular section columns", Compos. Part B: Eng., 39(3), 451-466. https://doi.org/10.1016/j.compositesb.2007.04.001. 
  100. Wu, G., Wu, Z.S., Lu, Z.T. and Ando, Y.B. (2008), "Structural performance of concrete confined with hybrid FRP composites", J. Reinf. Plast. Compos., 27(12), 1323-1348. https://doi.org/10.1177/0731684407084989. 
  101. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139).