DOI QR코드

DOI QR Code

Structural behaviour of concrete beam under electrochemical chloride extraction against a chloride-bearing environment

  • Ki Yong Ann (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Jiseok Kim (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Woongik Hwang (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2023.06.17
  • 심사 : 2023.12.04
  • 발행 : 2024.07.25

초록

The present study concerns a removal of chloride ions and structural behaviour of concrete beam at electrochemical chloride extraction (ECE). The electrochemical properties included 1000 mA/m2 current density for 2, 4 and 8 weeks. It was found that an increase in the duration of ECE resulted in an increase in the extraction rate of chlorides, in the range of 35-85%, irrespective of chloride contamination. In structural behaviour, the strength and maximum bending moment of specimen was always lowered by ECE. Moreover, the flexural rigidity and bending stiffness were reduced by the loss of effective cross-section area in the linear elastic range. Simultaneously, the inertia moment was substantially subjected to 70% loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A2C3012248).

참고문헌

  1. ACI 318R-19 (2019), Building Code Requirement for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI 365.1R-17 (2017), Report on Service Life Prediction, American Concrete Institute, Farmington Hills, MI, USA.
  3. Andisheh, K., Scott, A. and Palermo, A. (2018), "Experimental evaluation of the residual compression strength and ultimate strain of chloride corrosion-induced damaged concrete", Struct. Concrete, 20, 296-306. https://doi.org/10.1002/suco.201800108.
  4. Ann, K.Y., Jung, M.S., Shim, H.B. and Shin, M.C. (2011), "Effect of electrochemical treatment in inhibiting corrosion of steel in concrete", ACI Mater. J., 108(5), 485-492. https://doi.org/10.14359/51683257.
  5. Azad, A.K., Ahmad, S. and Azher, S.A. (2007), "Residual strength of corrosion-damaged reinforced concrete beams", ACI Mater. J., 104, 40-47. https://doi.org/10.14359/18493.
  6. Broomfield, J.P. (2003), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, CRC Press, Boca Raton, FL, USA.
  7. Buenfeld, N.R. and Broomfield, J.P. (2000), "Influence of electrochemical chloride extraction on the bond between steel and concrete", Mag. Concrete Res., 52, 79-91. https://doi.org/10.1680/macr.2000.52.2.79.
  8. Chang, Y., Wan, L. Mo, D. Hu, D. and Li, S. (2022), "Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory", Comput. Concrete, 30(4), 289-299. https://doi.org/10.12989/cac.2022.30.4.289
  9. Chen, Q., Jiang, Z., Zhu, H., Ju, J.W., Yan, Z. and Li, H. (2018) "The effective properties of saturated concrete healed by EDM with the ITZs", Comput. Concrete, 21(1), 67-74. https://doi.org/10.12989/cac.2018.21.1.067.
  10. Chen, X., Zhang, Q., Chen, P. and Liang, Q. (2021), "Numerical model for local corrosion of steel reinforcement in reinforced concrete structure", Comput. Concrete, 27(4), 385-393. https://doi.org/10.12989/cac.2021.27.4.385.
  11. Cho, C.G., Ann, K.Y., Kim, H., Hwang, W., Kim, J., Cho, W.J. and Jung, H.S. (2021), "Mobility of chloride in concrete subjected to electrochemical treatment", ACI Mater. J., 118(2), 189-198. https://doi.org/10.14359/51730416.
  12. Dong, J., Zhao, Y., Wang, K. and Jin, W. (2017), "Crack propagation and flexural behaviour of RC beams under simultaneous sustained loading and steel corrosion", Constr. Build. Mater., 151, 208-219. https://doi.org/10.1016/j.conbuildmat.2017.05.193.
  13. Elgebaley, R., Elshazly, Y. and Elsalamawy, M. (2019), "Role of cement type on performance change of reinforcing steel due to chloride extraction", Constr. Build. Mater., 208, 444-453. https://doi.org/10.1016/j.conbuildmat.2019.03.022.
  14. Elsener, B. (2008), "Long-term durability of electrochemical chloride extraction", Mater. Corros., 59(2), 91-97. https://doi.org/10.1002/maco.200804165.
  15. Elsener, B., Molina, M. and Bohni, H. (1993), "The electrochemical removal of chlorides from reinforced concrete", Corros. Sci., 35(5-8), 1563-1570. https://doi.org/10.1016/0010-938X(93)90385-T.
  16. Hanjari, K.Z., Kettil, P. and Lundgren, K. (2011), "Analysis of mechanical behavior of corroded reinforced concrete structures", ACI Struct. J., 108, 532-541. https://doi.org/10.14359/51683210.
  17. Hwang, W. and Ann, K.Y. (2023), "Determination of rust formation to cracking at the steel-concrete interface in concrete", Constr. Build. Mater., 137, 130215. https://doi.org/10.1016/j.conbuildmat.2022.130215.
  18. Ihekwaba, N.M., Hope, B.B. and Hansson, C.M. (1995), "Pull-out and bond degradation of steel rebars in ECE concrete", Cement Concrete Res., 26, 267-282. https://doi.org/10.1016/0008-8846(95)00210-3.
  19. Kallias, A.N. and Rafiq, M.I. (2010), "Finite element investigation of the structural response of corroded RC beams", Eng. Struct., 32, 2984-2994. https://doi.org/10.1016/j.engstruct.2010.05.017.
  20. Kordtabar, B. and Dehestani, M. (2021), "Effect of corrosion in reinforced concrete frame components on pushover behavior and ductility of frame", Struct. Concrete, 22, 2502-3194. https://doi.org/10.1002/suco.202000309.
  21. Li, Y., Liu, X., Wu, M. and Bai, W. (2017), "Research of electrochemical chloride extraction and reinforcement of concrete column using MPC-bonded carbon fiber reinforced plastic sheet & mesh", Constr. Build. Mater., 153, 436-444. https://doi.org/10.1016/j.conbuildmat.2017.07.131.
  22. Lim, S., Akiyama, M. and Frangopol, D.M. (2016), "Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling", Eng. Struct., 127, 189-205. https://doi.org/10.1016/j.engstruct.2016.08.040.
  23. Lin, H., Li, Y. and Li, Y. (2019), "A study on the deterioration of interfacial bonding properties of chloride-contaminated reinforced concrete after electrochemical chloride extraction treatment", Constr. Build. Mater., 197, 228-240. https://doi.org/10.1016/j.conbuildmat.2018.11.196.
  24. Liu, Y. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", ACI Mater. J., 95, 675-680. https://doi.org/10.14359/410.
  25. Marcotte, T.D., Hansson, C.M. and Hope, B.B. (1999), "The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar Part II: Microstructural characterization", Cement Concrete Res., 29, 1561-1568. https://doi.org/10.1016/S0008-8846(99)00117-9.
  26. Ou, Y.C. and Nguyen, N.D. (2014), "Plastic hinge length of corroded reinforced concrete beams", ACI Struct. J., 111, 1049-1058. https://doi.org/10.14359/51686872.
  27. Reou, J.S. and Ann, K.Y. (2010), "The distribution of hydration products at the steel-concrete interface for concretes subjected to electrochemical treatment", Corros. Sci., 52, 2197-2205. https://doi.org/10.1016/j.corsci.2010.02.037.
  28. Setiawan, Y., Gan, B.S. and Han, A.L. (2017), "Modeling of the ITZ zone in concrete: Experiment and numerical simulation", Comput. Concrete, 19(6), 641-649. https://doi.org/10.12989/cac.2017.19.6.641.
  29. Tofeti Lima, T., Ann, K.Y. (2020), "Efficiency of different electrolytes on electrochemical chloride extraction to recover concrete structures under chloride-induced corrosion", Adv. Mater. Sci. Eng., 2020, 1-11. https://doi.org/10.1155/2020/6715283.
  30. Torres-Acosta, A.A., Navarro-Gutierreza, S. and Teran- Guillen, J. (2007), "Residual flexure capacity of corroded reinforced concrete beams", Eng. Struct., 29, 1145-1152. https://doi.org/10.1016/j.engstruct.2006.07.018.
  31. Tu, X., Li, Z., Chen, A. and Pan, Z. (2018), "A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model", Comput. Concrete, 21(4), 471-484. https://doi.org/10.12989/cac.2018.21.4.471.
  32. Tu, X., Pang, C., Zhou, X. and Chen, A. (2019), "Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three dimensional multiscale approach", Comput. Concrete, 23(1), 69-80. https://doi.org/10.12989/cac.2019.23.1.069.
  33. Vrable, J.B. (1977), Cathodic Protection for Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA, USA.
  34. Vu, K., Stewart, M.G. and Mullard, J. (2005), "Corrosion-induced cracking: Experimental data and predictive models", ACI Struct. J., 102, 719-726. https://doi.org/10.14359/14667.
  35. Yalciner, H. and Kumbasaroglu, A. (2020), "Experimental evaluation and modeling of corroded reinforced concrete columns", ACI Struct. J., 117, 61-76. https://doi.org/10.14359/51721372.
  36. Yalciner, H., Kumbasaroglu, A., El-Sayed, A.K., Pekrioglu Balkis, A., Dogru, E., Turan, A.I., Karimi, A., Kohistani, R., Mermit, M.F. and Bicer, K. (2020), "Flexural strength of corroded reinforced concrete beams", ACI Struct. J., 117, 29-41. https://doi.org/10.14359/51720195.
  37. Zhang, Q. and Gong, J. (2013), "Study on seismic behavior of reinforced concrete columns after ECE treatment", Constr. Build. Mater., 50, 249-559. https://doi.org/10.1016/j.conbuildmat.2013.10.001.