References
- Boshoff, W.P. and Combrinck, R. (2013), "Modelling the severity of plastic shrinkage cracking in concrete", Cement Concrete Res., 48, 34-39. https://doi.org/10.1016/j.cemconres.2013.02.003.
- Chen, C.S., Pan, E. and Amadei, B. (1998), "Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method", Int. J. Rock Mech. Min. Sci., 35(2), 195-218. https://doi.org/10.1016/S0148-9062(97)00330-6.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotech., 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
- Debecker, B. and Vervoort, A. (2009), "Experimental observation of fracture patterns in layered slate", Int. J. Fract., 159, 51-62. https://doi.org/10.1007/s10704-009-9382-z.
- Esterhuizen, G.S., Dolinar, D.R. and Ellenberger, J.L. (2011), "Pillar strength in underground stone mines in the United States", Int. J. Rock Mech. Min. Sci., 48, 42-50. https://doi.org/10.1016/j.ijrmms.2010.06.003.
- Feng, X.T., Ding, W.X. and Zhang, D.X. (2009), "Multi-crack interaction in limestone subject to stress and flow of chemical solutions", Int. J. Rock Mech. Min. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijrmms.2008.08.001.
- Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107.
- Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.
- Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214. https://doi.org/10.12989/cac.2016.18.2.201.
- Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.649.
- Hall, S.A., De Sanctis, F. and Viggiani, G. (2006), "Monitoring fracture propagation in a soft rock (Neapolitan Tuff) using acoustic emissions and digital images", Pure Appl. Geophys., 163, 2171-2204. https://doi.org/10.1007/s00024-006-0117-z.
- Huang, R.Q. and Wu, L.Z. (2019), "Crack initiation criteria and fracture simulation for pre cracked sandstones", Adv. Mater. Sci. Eng., 45(2), 45-65. https://doi.org/10.1155/2019/9359410.
- Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solids Struct., 42, 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.
- Mughieda, O. and Omar, M.T. (2008), "Stress analysis for rock mass failure with offset joints", Geotech. Geol. Eng., 26, 543-552. https://doi.org/10.1007/s10706-008-9188-1.
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: Acomparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
- Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, June.
- Prudencio, M. and Van Sint Jan, M. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902. https://doi.org/10.1016/j.ijrmms.2007.01.005.
- Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/acc.2015.3.4.269.
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
- Sarfarazi, V., Haeri, H., Shemirani, A. and Zhu, Z. (2017), "Shear behavior of non-persistent joint under high normal load", Strength Mater., 49, 320-334. https://doi.org/10.1007/s11223-017-9872-6.
- Scholte's, L. and Donze', F.V. (2013), "A DEM model for soft and hard rocks: Role of grain interlocking on strength", J. Mech. Phys. Solids, 61, 352-369. https://doi.org/10.1016/j.jmps.10.005.
- Tang, C. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3.
- Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61, 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8.
- Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 44-57. https://doi.org/10.12989/cac.2020.25.6.044.
- Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038.
- Vesga, L.F., Vallejo, L.E. and Lobo-Guerrero, S. (2008), "DEM analysis of the crack propagation in brittle clays under uniaxial compression tests", Int. J. Numer. Anal. Methods Geomech., 32, 1405-1415. https://doi.org/10.1002/nag.665.
- Wong, L.N.Y. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
- Wong, R.H.C., Tang, C.A., Chau, K.T. and Lin, P. (2002), "Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression", Eng. Fract. Mech., 69, 1853-1871. https://doi.org/10.1016/S0013-7944(02)00065-6.
- Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49, 1813-1830. https://doi.org/10.1007/s00603-015-0890-z.
- Xi, J.Y., Chen, Z.H. and Zhu, D.J. (2015), "Stress intensity factors and initiation of unequal collinear cracks in rock", Chin. J. Geotech. Eng., 37(4), 727-733. https://doi.org/10.11779/CJGE201504019.
- Yang, S.Q. and Huang, Y.H. (2014), "Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass", Acta Mech. Sinica, 30(4), 547-558. https://doi.org/10.1007/s10409-014-0076-z.
- Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
- Yang, S.Q., Huang, Y.H., Jing, H.W. and Liu, X.R. (2014), "Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression", Eng. Geol., 178, 28-48. https://doi.org/10.1016/j.enggeo.2014.06.005.
- Yang, S.Q., Huang, Y.H., Jing, H.W. and Liu, X.R. (2014), "Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression", Eng. Geol., 178, 28-48. https://doi.org/10.1016/j.enggeo.2014.06.005.
- Yang, S.Q., Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
- Yang, S.Q., Yang, D.S., Jing, H.W., Li, Y.H. and Wang, S.Y. (2012), "An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures", Rock Mech. Rock Eng., 45(4), 563-582. https://doi.org/10.1007/s00603-011-0206-x.
- Yang, S.Q., Yang, D.S., Jing, H.W., Li, Y.H. and Wang, S.Y. (2012), "An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures", Rock Mech. Rock Eng., 45(4), 563-582. https://doi.org/10.1007/s00603-011-0206-x.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M.,Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
- Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", Int. J. Rock Mech. Min. Sci., 44, 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004.
- Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.
- Zhu, D.J., Chen, Z.H. and Xi, J.Y (2017), "Interaction between offset parallel cracks in rock", Chin. J. Geotech. Eng., 39(2), 235-243. https://doi.org/10.1155/2019/1430624.