DOI QR코드

DOI QR Code

Exploring shrinkage crack propagation in concrete: A comprehensive analysis through theoretical, experimental, and numerical approaches

  • Vahab Sarfarazi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Soheil Abharian (Department of Civil and Environmental Engineering, Western University) ;
  • Nima Babanouri (Department of Mining Engineering, Hamedan University of Technology)
  • Received : 2021.06.09
  • Accepted : 2023.11.21
  • Published : 2024.07.25

Abstract

This study explores the failure mechanisms of 'I' shaped non-persistent cracks under uniaxial loads through a combination of experimental tests and numerical simulations. Concrete specimens measuring 200 mm×200 mm×50 mm were manufactured, featuring 'I' shaped non-persistent joints. The number of these joints varied from one to three, with angles set at 0, 30, 60, and 90 degrees. Twelve configurations, differing in the placement of pre-existing joints, were considered, where larger joints measured 80 mm in length and smaller cracks persisted for 20 mm with a 1 mm crack opening. Numerical models were developed for the 12 specimens, and loading in Y-axis direction was 0.05 mm/min, considering a concrete tensile strength of 5 MPa. Results reveal that crack starting was primarily influenced by the slope of joint that lacks persistence in relation to the loading direction and the number of joints. The compressive strength of the samples exhibited variations based on joint layout and failure mode. The study reveals a correlation between the failure behavior of joints and the number of induced tensile fracture, which increased with higher joint angles. Specimen strength increased with decreasing joint angles and numbers. The strength and failure processes exhibited similarities in both laboratory testing and numerical modeling methods.

Keywords

References

  1. Boshoff, W.P. and Combrinck, R. (2013), "Modelling the severity of plastic shrinkage cracking in concrete", Cement Concrete Res., 48, 34-39. https://doi.org/10.1016/j.cemconres.2013.02.003.
  2. Chen, C.S., Pan, E. and Amadei, B. (1998), "Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method", Int. J. Rock Mech. Min. Sci., 35(2), 195-218. https://doi.org/10.1016/S0148-9062(97)00330-6.
  3. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotech., 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  4. Debecker, B. and Vervoort, A. (2009), "Experimental observation of fracture patterns in layered slate", Int. J. Fract., 159, 51-62. https://doi.org/10.1007/s10704-009-9382-z.
  5. Esterhuizen, G.S., Dolinar, D.R. and Ellenberger, J.L. (2011), "Pillar strength in underground stone mines in the United States", Int. J. Rock Mech. Min. Sci., 48, 42-50. https://doi.org/10.1016/j.ijrmms.2010.06.003.
  6. Feng, X.T., Ding, W.X. and Zhang, D.X. (2009), "Multi-crack interaction in limestone subject to stress and flow of chemical solutions", Int. J. Rock Mech. Min. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijrmms.2008.08.001.
  7. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107.
  8. Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.
  9. Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214. https://doi.org/10.12989/cac.2016.18.2.201.
  10. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.649.
  11. Hall, S.A., De Sanctis, F. and Viggiani, G. (2006), "Monitoring fracture propagation in a soft rock (Neapolitan Tuff) using acoustic emissions and digital images", Pure Appl. Geophys., 163, 2171-2204. https://doi.org/10.1007/s00024-006-0117-z.
  12. Huang, R.Q. and Wu, L.Z. (2019), "Crack initiation criteria and fracture simulation for pre cracked sandstones", Adv. Mater. Sci. Eng., 45(2), 45-65. https://doi.org/10.1155/2019/9359410.
  13. Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.
  14. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  15. Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solids Struct., 42, 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.
  16. Mughieda, O. and Omar, M.T. (2008), "Stress analysis for rock mass failure with offset joints", Geotech. Geol. Eng., 26, 543-552. https://doi.org/10.1007/s10706-008-9188-1.
  17. Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: Acomparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
  18. Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, June.
  19. Prudencio, M. and Van Sint Jan, M. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902. https://doi.org/10.1016/j.ijrmms.2007.01.005.
  20. Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
  21. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/acc.2015.3.4.269.
  22. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
  23. Sarfarazi, V., Haeri, H., Shemirani, A. and Zhu, Z. (2017), "Shear behavior of non-persistent joint under high normal load", Strength Mater., 49, 320-334. https://doi.org/10.1007/s11223-017-9872-6.
  24. Scholte's, L. and Donze', F.V. (2013), "A DEM model for soft and hard rocks: Role of grain interlocking on strength", J. Mech. Phys. Solids, 61, 352-369. https://doi.org/10.1016/j.jmps.10.005.
  25. Tang, C. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3.
  26. Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61, 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8.
  27. Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 44-57. https://doi.org/10.12989/cac.2020.25.6.044.
  28. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038.
  29. Vesga, L.F., Vallejo, L.E. and Lobo-Guerrero, S. (2008), "DEM analysis of the crack propagation in brittle clays under uniaxial compression tests", Int. J. Numer. Anal. Methods Geomech., 32, 1405-1415. https://doi.org/10.1002/nag.665.
  30. Wong, L.N.Y. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
  31. Wong, R.H.C., Tang, C.A., Chau, K.T. and Lin, P. (2002), "Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression", Eng. Fract. Mech., 69, 1853-1871. https://doi.org/10.1016/S0013-7944(02)00065-6.
  32. Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49, 1813-1830. https://doi.org/10.1007/s00603-015-0890-z.
  33. Xi, J.Y., Chen, Z.H. and Zhu, D.J. (2015), "Stress intensity factors and initiation of unequal collinear cracks in rock", Chin. J. Geotech. Eng., 37(4), 727-733. https://doi.org/10.11779/CJGE201504019.
  34. Yang, S.Q. and Huang, Y.H. (2014), "Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass", Acta Mech. Sinica, 30(4), 547-558. https://doi.org/10.1007/s10409-014-0076-z.
  35. Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
  36. Yang, S.Q., Huang, Y.H., Jing, H.W. and Liu, X.R. (2014), "Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression", Eng. Geol., 178, 28-48. https://doi.org/10.1016/j.enggeo.2014.06.005.
  37. Yang, S.Q., Huang, Y.H., Jing, H.W. and Liu, X.R. (2014), "Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression", Eng. Geol., 178, 28-48. https://doi.org/10.1016/j.enggeo.2014.06.005.
  38. Yang, S.Q., Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
  39. Yang, S.Q., Yang, D.S., Jing, H.W., Li, Y.H. and Wang, S.Y. (2012), "An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures", Rock Mech. Rock Eng., 45(4), 563-582. https://doi.org/10.1007/s00603-011-0206-x.
  40. Yang, S.Q., Yang, D.S., Jing, H.W., Li, Y.H. and Wang, S.Y. (2012), "An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures", Rock Mech. Rock Eng., 45(4), 563-582. https://doi.org/10.1007/s00603-011-0206-x.
  41. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  42. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  43. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  44. Yaylaci, M.,Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  45. Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", Int. J. Rock Mech. Min. Sci., 44, 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004.
  46. Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.
  47. Zhu, D.J., Chen, Z.H. and Xi, J.Y (2017), "Interaction between offset parallel cracks in rock", Chin. J. Geotech. Eng., 39(2), 235-243. https://doi.org/10.1155/2019/1430624.