Acknowledgement
The researcher uses this opportunity to express our appreciation to NIIED (National Institute for International Education) sponsored by Korean Ministry of Education.
References
- Ahmed, Y., Hassanzadeh, R., Yaakob, O. and Ismail, M. (2013), "Comparison of conventional and helical Savonius marine current turbine using computational fluid dynamics", World Appl. Sci. J., 28, 1113-1119.
- Akwa, J.V., Vielmo, H.A. and Petry, A.P. (2012), "A review on the performance of Savonius wind turbines", Renew. Sust. Energ. Rev., 16(5), 3054-3064. https://doi.org/10.1016/j.rser.2012.02.056.
- Almohammadi, K.M., Ingham, D.B. and Ma, L. (2012), "Pourkashanian M. CFD sensitivity analysis of a straight-blade vertical axis wind turbine", Wind Eng., 36(5), 571-588. https://doi.org/10.1260/0309-524X.36.5.
- Almohammadi, K.M., Ingham, D.B., Ma, L. and Pourkashan, M. (2013), "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine", Energy, 58, 483-493. https://doi.org/10.1016/j.energy.2013.06.012.
- Bahaj, A.S. (2013), "Marine current energy conversion: The dawn of a new era in electricity production", Philos. T. R. Soc. A., 371, 20120500. https://doi.org/10.1098/rsta.2012.0500.
- Birjandi, A.H., Bibeau, E.L., Chatoorgoon, V. and Kumar, A. (2013), "Power measurement of hydrokinetic turbines with free-surface and blockage effect", Ocean Eng., 69, 9-17. https://doi.org/10.1016/j.oceaneng.2013.05.023.
- Boissonnat, J.D., Cohen-Steiner, D., Mourrain, B., Rote, G. and Vegter, G. (2006), "Meshing of Surfaces". In: Boissonnat, J.D. and Teillaud, M. (Eds), Effective computational geometry for curves and surfaces. Springer, Berlin, Heidelberg.
- Chemengich, S.J., Kassab, S.Z. and Lotfy, E.R. (2022), "Effect of the variations of the gap flow guides geometry on the savonius wind turbine performance: 2D and 3D studies", J. Wind Eng. Ind. Aerod., 222, 104920. https://doi.org/10.1016/j.jweia.2022.104920.
- Guney, M.S. and Kaygusuz, K. (2010), "Hydrokinetic energy conversion systems: A technology status review", Renew. Sust. Energ. Rev., 14(9), 2996-3004. https://doi.org/10.1016/j.rser.2010.06.016.
- Hirt, C.W. and Nichols, B.D. (1981), "Volume of Fluid (VOF) method for the dynamics of free boundaries", J. Comput. Phys., 39(1), 201. https://doi.org/10.1016/0021-9991(81)90145-5.
- Ito, Y. and Nakahashi, K. (2004), "Improvements in the reliability and quality of unstructured hybrid mesh generation", Int. J. Numer. Meth. Fl., 45(1), 79-108. https://doi.org/10.1002/fld.669.
- Kerikous, E. and Thevenin, D. (2019), "Performance enhancement of a hydraulic Savonius turbine by optimizing overlap and gap ratios", Proceedings of the ASME 2019 Gas Turbine India Conference, Chennai, India.
- Mejia, O.D.L., Mejia, O.E., Escorcia, K.M., Suarez, F. and Lain, S. (2021), "Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications", Processes, 9(11), 1933. https://doi.org/10.3390/pr9111933.
- Maldar, N.R., Ng, C.Y. and Oguz, E. (2020), "A review of the optimization studies for Savonius turbine considering hydrokinetic applications", Energ. Convers. Management, 226, 113495. https://doi.org/10.1016/j.enconman.2020.113495.
- Myers, L. and Bahaj, A.S. (2007), "Wake studies of a 1/30th scale horizontal axis marine current turbine", Ocean Eng., 34(5-6), 758-762. https://doi.org/10.1016/j.oceaneng.2006.04.013.
- Nakajima, M., Iio, S. and Ikeda, T. (2008), "Performance of Savonius rotor for environmentally friendly hydraulic turbine", J. Fluid Sci. Tech., 3, 420-429. https://doi.org/10.1299/jfst.3.420.
- Ramdhani, M.A., George, A. and Cho, I.H. (2024), "Influence of separation gap on the performance of Savonius hydrokinetic turbine", Intel. Sustain. Manufact., 1(1), 10005. https://doi.org/10.35534/ism.2024.10005.
- Roy, S. and Saha, U.K., (2013), "Review on the numerical investigations into the design and development of Savonius wind rotors", Renew. Sust. Energ. Rev., 24, 73-83. https://doi.org/10.1016/j.rser.2013.03.060.
- Satrio, D., Utama, I.K. and Mukhtasor, M., (2018), "The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine", J. Mech. Eng. Sci., 12(1), 3399-3409. https://doi.org/10.15282/jmes.12.1.2018.9.0303.
- Savonius, S.J. (1931), "The S-rotor and its applications", Mech. Eng., 53, 333-338.
- Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows", Comput. Fluids, 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T.
- Sobczak, K. (2018), "Numerical investigations of an influence of the aspect ratio on the Savonius rotor performance", J. Phys.: Conf. Ser., 1101, 012034. https://doi.org/10.1088/1742-6596/1101/1/012034.
- Thiyagaraj, J., Rahamathullah, I., Anbuchezhiyan, G., Barathiraja, R. and Ponshanmugakumar, A. (2021), "Influence of blade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine", Materials Today: Proceedings, 46(9), 4047-4053. https://doi.org/10.1016/j.matpr.2021.02.568.
- Tu, J., Yeoh, G.H. and Liu, C. (2008), "Computational fluid dynamics-a practical approach", Butterworth-Heinemann: Oxford, UK.
- UniAET (2020), "Simcenter STAR-CCM+ Basic Training", Siemens: Munich, Germany.
- Ushiyama, I. and Nagai, H. (1988), "Optimum design configurations and performance of Savonius rotors", Wind Eng., 12(1), 59-75.
- Whelan, J.I., Graham, J.M.R. and Perio, J. (2009), "A free-surface and blockage correction for tidal turbines", J. Fluid Mech., 624, 281-291. https://doi.org/10.1017/S0022112009005916.
- Zhang, B., Li, B., Li, C., Zhang, Y., Lv, J. and Yu, H. (2024), "Effects of submergence depth on the performance of the Savonius hydrokinetic turbine near a free surface", Energy, 289, 129899. https://doi.org/10.1016/j.energy.2023.129899
- Zilic de Arcos, F., Tampier, G., and Vogel, C.R. (2020), "Numerical analysis of blockage correction methods for tidal turbines", J. Ocean Eng. Mar. Energy, 6, 183-197. https://doi.org/10.1007/s40722-020-00168-6.