DOI QR코드

DOI QR Code

Spatial Distribution Pattern of Cladoceran Community in Accordance with Microhabitat Types

미소서식처 유형별 지각류 (Cladocerans)의 분포 특성

  • 최종윤 (부경대학교 지속가능공학부 생태공학전공)
  • Received : 2023.11.29
  • Accepted : 2024.05.15
  • Published : 2024.06.30

Abstract

Aquatic macrophytes are important factors in determining species diversity and abundance of cladocerans, but the effects of cladocerans on plant species composition or structure have not been fully considered. In South Korea, wetlands and reservoirs that are prone to covering aquatic macrophytes are scattered across the country, so it is necessary to consider on aquatic macrophytes study, when aquatic animals including cladoceran were studied. in this study, the species and abundance of cladocerans community in six microhabitat types are investigated, and based on these results, habitat conservation and efficient management are suggested. The high species numbers and abundance of cladocerans communities were found in mixed plant communities consisting of free-floating, floating-leaved, and submerged plants. The inclusion of submerged plants in plant communities contributes significantly to the complexity of habitat structures, and may increase species and abundance of cladocenran communities. This can be compared to a plant community consisting only of free-floating and floating-leaved plants in the absence of submerged plants, thereby identifying the efficiency of submerged plants. In the mixed plant communities, species diversity was the highest due to the emergence of cladoceran species (Graptoleveris testudinaria, Ilyocryptus spinifer, and Leydigia acanthococcides) absent from other plant communities. The gradual increase in the biomass (g) of submerged plants in the mixed plant communities significantly increased the species numbers and abundance of cladoceran communities (p<0.05). This is strong evidence that the increase of submerged plants in mixed plant communities has a positive effect on efficiency as a habitat for cladocerans. Although submeged plants do not contribute significantly to their landscape/aesthetic value because they are submerged in water, they have the effect of increasing species diversity in terms of biology, so they should be considered important when creating/restoring wetlands.

수생식물은 지각류의 종다양성과 풍부도를 결정하는 중요한 요인이지만, 식물의 종구성이나 구조에 대한 지각류의 영향은 충분하게 고려되지 않았다. 남한은 수생식물이 피복되기 쉬운 습지나 저수지가 전국에 산재하고 있기 때문에 지각류를 포함한 생물 연구 시 수생식물에 대한 고려가 필요하다. 본 연구에서는 6가지 유형의 미소서식처에서 지각류 군집의 종수와 풍부도를 조사하고, 이 결과를 기반으로 서식처 보전과 효율적인 관리에 대해 고찰하고 한다. 지각류 군집의 높은 종수와 풍부도는 부유식물, 부엽식물, 그리고 침수식물이 함께 구성된 혼합된 식물 군락에서 목격되었다. 식물 군락에서 침수식물의 포함은 서식처 구조의 복잡성에 크게 기여하며, 지각류 군집의 종수와 풍부도를 증가시킬 수 있다. 이는 침수식물이 부재한 부유 및 부엽식물로만 구성된 식물 군락과 비교함으로서 침수식물의 효율성을 파악할 수 있다. 혼합된 식물 군락에서는 다른 식물 군락에 부재하는 지각류 종 (Graptoleveris testudinaria, Ilyocryptus spinifer, Leydigia acanthocercoides)이 출현함으로서 종다양성이 가장 높았다. 혼합된 식물 군락에서 침수식물의 점차적인 생물량 (g) 증가는 지각류 군집의 종수와 풍부도를 유의하게 증가시켰다 (p<0.05). 이는 혼합된 식물 군락에서 침수식물의 증가가 지각류의 서식처로서 효율성에 긍정적인 영향을 미친다는 강력한 증거이다. 비록 침수식물은 수중에 침수되어 서식하기 때문에 경관적/미적인 가치에 크게 기여하지 않지만, 생물학적 측면에서 종다양성을 증가시키는 효과를 가지기 때문에 습지 창출/복원 시 중요하게 고려되어야 할 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2023학년도 부경대학교의 지원을 받아 수행된 연구임(202303880001, 미소서식처 유형별 지각류 분포 및 종조성 파악).

References

  1. Austin, A.N., J.P. Hansen, S. Donadi and J.S. Eklof(2017) Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales. PLOS one 12(8): e0181419.
  2. Bhat, N.A., A. Wanganeo and R. Raina(2015) Seasonal dynamics of phytoplankton community in a tropical wetland. Environmental Monitoring and Assessment 187: 1-12. https://doi.org/10.1007/s10661-014-4136-4
  3. Casanova, M.T. and M.A. Brock(2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant ecology 147: 237-250. https://doi.org/10.1023/A:1009875226637
  4. Cazzanelli, M., T.P. Warming and K.S. Christoffersen(2008) Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113-122. https://doi.org/10.1007/s10750-008-9324-1
  5. Chase, J. M., P.A. Abrams, J.P. Grover, S. Diehl, P. Chesson, R.D. Holt, S.A. Richards, R.M. Nisbet and T.J. Case(2002) The interaction between predation and competition: A review and synthesis. Ecology Letters 5(2): 302-315. https://doi.org/10.1046/j.1461-0248.2002.00315.x
  6. Choi, J.Y. and K.S. Kim(2020) Responses of rotifer community to microhabitat changes caused by summer-concentrated rainfall in a shallow reservoir, South Korea. Diversity 12(3): 113.
  7. Choi, J.Y., K.S Jeong, G.H. La, K.H. Chang and G.J. Joo(2015). The influence of aquatic macrophytes on the distribution and feeding habits of two Asplanchna species (A. priodonta and A. herrickii) in shallow wetlands in South Korea. Journal of Limnology 74(1): 1-11.
  8. Choi, J.Y., K.S. Jeong, E. Lee, K.R. Choi and G.J. Joo(2014d). Utilization of fish gut analysis to elucidation of microcrustacean species composition (cladoceran and copepoda) in a shallow and vegetated lake (Jangcheok Lake, South Korea). Journal of Ecology and Environment 37(3): 147-153. https://doi.org/10.5141/ecoenv.2014.018
  9. Choi, J.Y., K.S. Jeong, G.H. La and G.J. Joo(2014b). Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowledge and Management of Aquatic Ecosystems (414): 11.
  10. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo(2014a). Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology 73(1): 197-202. https://doi.org/10.4081/jlimnol.2014.736
  11. Choi, J.Y., K.S. Jeong, S.K. Kim and G.J. Joo(2016) Impact of habitat heterogeneity on the biodiversity and density of the zooplankton community in shallow wetlands (Upo wetlands, South Korea). Oceanological and Hydrobiological Studies 45(4): 485-492. https://doi.org/10.1515/ohs-2016-0041
  12. Choi, J.Y., K.S. Jeong, S.K. Kim, G.H. La, K.H. Chang and G.J. Joo(2014c). Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24: 177-185. https://doi.org/10.1016/j.ecoinf.2014.09.002
  13. De Szalay, F.A. and V.H. Resh(2000). Factors influencing macroinvertebrate colonization of seasonal wetlands: Responses to emergent plant cover. Freshwater Biology 45(3): 295-308. https://doi.org/10.1111/j.1365-2427.2000.00623.x
  14. Dibble, E.D. and F.M. Pelicice (2010) Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecology of Freshwater Fish 19(3): 381-389. https://doi.org/10.1111/j.1600-0633.2010.00420.x
  15. Ferreiro, N., C. Feijoo, A. Giorgi and J. Rosso(2014) Macroinvertebrates select complex macrophytes independently of their body size and fish predation risk in a Pampean stream. Hydrobiologia 740: 191-205. https://doi.org/10.1007/s10750-014-1953-y
  16. Franklin, P., M. Dunbar and P. Whitehead(2008) Flow controls on lowland river macrophytes: A review. Science of the Total Environment 400(1-3): 369-378. https://doi.org/10.1016/j.scitotenv.2008.06.018
  17. Jeong, H., A.A. Kotov, W. Lee, R. Jeong and S. Cheon(2015) Diversity of freshwater cladoceran species (Crustacea: Branchiopoda) in South Korea. Journal of Ecology and Environment 38(3): 361-366. https://doi.org/10.5141/ecoenv.2015.037
  18. Jeong, K.S., D.K. Kim, H.S. Shin, J.D. Yoon, H.W. Kim and G.J. Joo(2011). Impact of summer rainfall on the seasonal water quality variation (chlorophyll a) in the regulated Nakdong River. KSCE Journal of Civil Engineering 15: 983-994. https://doi.org/10.1007/s12205-011-1052-9
  19. Jeong, K.Y., J.Y. Choi and K.S. Jeong(2014) Influence of aquatic macrophytes on the interactions among aquatic organisms in shallow wetlands (Upo Wetland, South Korea). Journal of Ecology and Environment 37(4): 185-194. https://doi.org/10.5141/ecoenv.2014.022
  20. Johnson, P.T., J.M. Chase, K.L. Dosch, R.B. Hartson, J.A. Gross, D.J. Larson, D.R. Sutherland and S.R. Carpenter(2007) Aquatic eutrophication promotes pathogenic infection in amphibians. Proceedings of the National Academy of Sciences 104(40): 15781-15786. https://doi.org/10.1073/pnas.0707763104
  21. Kallimanis, A.S., A.D. Mazaris, J. Tzanopoulos, J.M. Halley, J.D. Pantis and S.P. Sgardelis(2008) How does habitat diversity affect the species-area relationship? Global Ecology and Biogeography 17(4): 532-538. https://doi.org/10.1111/j.1466-8238.2008.00393.x
  22. Kim, S.K. and J.Y. Choi(2022) Selective Consumption of Pelagic Cladocerans by Bluegill Sunfish (Lepomis macrochirus Rafinesque) Contributes to Dominance of Epiphytic Cladocerans. Water 14(22): 3781.
  23. Kneitel, J.M. and J.M. Chase(2004) Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecology letters 7(1): 69-80. https://doi.org/10.1046/j.1461-0248.2003.00551.x
  24. Kuczynska-Kippen, N.M. and B. Nagengast(2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. https://doi.org/10.1007/s10750-005-0867-0
  25. Li, F., T. Zhang, Z. Zhang, T. Lv, H. Yu, D. Yu and C. Liu(2024). Predation risk-mediated indirect effects promote submerged plant growth: Implications for lake restoration. Journal of Environmental Management 355: 120512.
  26. Magee, T.K. and M.E. Kentula(2005) Response of wetland plant species to hydrologic conditions. Wetlands Ecology and Management 13: 163-181. https://doi.org/10.1007/s11273-004-6258-x
  27. Mamani, A., M.L. Koncurat and M. Boveri(2019) Combined effects of fish and macroinvertebrate predation on zooplankton in a littoral mesocosm experiment. Hydrobiologia 829: 19-29. https://doi.org/10.1007/s10750-018-3712-y
  28. Manatunge, J., T. Asaeda and T. Priyadarshana(2000) The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425-438. https://doi.org/10.1023/A:1007691425268
  29. Meerhoff, M., N. Mazzeo, B. Moss and L. Rodriguez-Gallego (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377-391. https://doi.org/10.1023/B:AECO.0000007041.57843.0b
  30. Mizuno, T. and E. Takahashi(1999) An illustration guide to freshwater zooplankton in Japan. Simizu: Tokai University.
  31. Negrea, S. and O. Hurdugan-Irimia(2011) Conspect of the Cladoceran species (Crustacea, Branchiopoda) identified in the poorly known urban Tineretului Lake (Bucharest, Romania). Romanian Journal of Aquatic Ecology 1: 123-138.
  32. Nurminen, L., Z. Pekcan-Hekim, S. Repka and J. Horppila(2010). Effect of prey type and inorganic turbidity on littoral predator-prey interactions in a shallow lake: an experimental approach. Hydrobiologia 646: 209-214. https://doi.org/10.1007/s10750-010-0175-1
  33. Padial, A. A., S.M. Thomaz and A.A. Agostinho(2009). Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624: 161-170. https://doi.org/10.1007/s10750-008-9690-8
  34. Partanen, S., M. Luoto and S. Hellsten(2009) Habitat level determinants of emergent macrophyte occurrence, extension and change in two large boreal lakes in Finland. Aquatic Botany 90(3): 261-268. https://doi.org/10.1016/j.aquabot.2008.11.001
  35. Pawlikowski, K. and R. Kornijow(2023) Above-and below ground habitat complexity created by emergent and submerged vegetation drives the structure of benthic assemblages. Oceanologia 65(2): 358-370. https://doi.org/10.1016/j.oceano.2022.10.002
  36. Pelicice, F. M., S.M. Thomaz and A.A. Agostinho(2008) Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotropical Ichthyology 6: 543-550. https://doi.org/10.1590/S1679-62252008000400001
  37. Picard, C. R., L.H. Fraser and D. Steer(2005) The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresource technology 96(9): 1039-1047. https://doi.org/10.1016/j.biortech.2004.09.007
  38. Pont, D. and J. Amrani(1990) The effects of selective fish predation on the horizontal distribution of pelagic Cladocera in a southern French reservoir. Hydrobiologia 207: 259-267. https://doi.org/10.1007/BF00041464
  39. Sagrario, G., M. De Los Angeles, E. Balseiro, R. Ituarte and E. Spivak(2009) Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biology 54(5): 1042-1053. https://doi.org/10.1111/j.1365-2427.2008.02152.x
  40. Sakuma, M., T. Hanazato, A. Saji and R. Nakazato(2004) Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology 5: 17-23. https://doi.org/10.1007/s10201-003-0110-5
  41. Sondergaard, M. and B. Moss(1998) Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: The structuring role of submerged macrophytes in lakes. New York, Springer, pp. 115-132.
  42. Thomaz, S.M. and E.R.D. Cunha(2010) The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia 22: 218-236. https://doi.org/10.4322/actalb.02202011
  43. Wellborn, G.A., D.K. Skelly and E.E. Werner(1996) Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27(1): 337-363. https://doi.org/10.1146/annurev.ecolsys.27.1.337
  44. Wetzel, R.G. and G.E. Likens(2000). Limnological Analyses. NY, Springer-Verlag.
  45. Yarwood, S.A.(2018) The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiology Ecology 94(11): fiy175.
  46. Young, K.A.(2001) Habitat diversity and species diversity: testing the competition hypothesis with juvenile salmonids. Oikos 95(1): 87-93. https://doi.org/10.1034/j.1600-0706.2001.950110.x