DOI QR코드

DOI QR Code

Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters

  • Hyun Jin Kim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Sion Ham (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Nara-Shin (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Jeong Hyeon Hwang (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Suk Jin Oh (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Tae-Rim Choi (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Jeong Chan Joo (Department of Chemical Engineering, Kyung Hee University) ;
  • Shashi Kant Bhatia (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Yung-Hun Yang (Department of Biological Engineering, College of Engineering, Konkuk University)
  • 투고 : 2023.08.21
  • 심사 : 2023.11.22
  • 발행 : 2024.04.28

초록

Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF), the Ministry of Science and ICT (NRF-2022R1A2C2003138, NRF-2022M3I3A1082545) and the R&D Program of MOTIE/KEIT (Grant No. 20009508 and 20014350). This paper was also supported by the Konkuk University Researcher Fund in 2023.

참고문헌

  1. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT. 1983. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167-169. https://doi.org/10.1126/science.6353574
  2. Cheng L, Yin S, Chen M, Sun B, Hao S, Wang C. 2016. Enhancing indigo production by over-expression of the styrene monooxygenase in Pseudomonas putida. Curr. Microbiol. 73: 248-254. https://doi.org/10.1007/s00284-016-1055-3
  3. Du L, Yue J, Zhu Y, Yin S. 2022. Production of indigo by recombinant Escherichia coli with expression of monooxygenase, tryptophanase, and molecular chaperone. Foods 11: 2117.
  4. Jiang Y, Xiao Y, Wang Z, Yu H, Hu K, Zhang TA, et al. 2022. A two-step process for indigo production from Baphicacanthus cusia stem. J. Clean. Prod. 374: 133935.
  5. Inoue S, Morita R, Minami Y. 2021. An indigo-producing plant, Polygonum tinctorium, possesses a flavin-containing monooxygenase capable of oxidizing indole. Biochem. Biophys. Res. Commun. 534: 199-205. https://doi.org/10.1016/j.bbrc.2020.11.112
  6. Chen T, Wang X, Zhuang L, Shao A, Lu Y, Zhang H. 2021. Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis. Microb. Cell Fact. 20: 154.
  7. Dutta S, Mutaz E, Farag N, Sarangi BK. 2019. Enhancement of indigo dye yield from Indigofera plant biomass by using fungal elicitors during fermentation. Ind. J. Exp. Biol. 57: 619-624
  8. Han GH, Bang SE, Babu BK, Chang M, Shin HJ, Kim SW. 2011. Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochem. 46: 788-791. https://doi.org/10.1016/j.procbio.2010.10.015
  9. Dai C, Ma Q, Li Y, Zhou D, Yang B, Qu Y. 2019. Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production. Bioprocess Biosyst. Eng. 42: 1963-1971. https://doi.org/10.1007/s00449-019-02189-4
  10. Cheng L, Yin S, Chen M, Sun B, Hao S, Wang C. 2016. Enhancing indigo production by over-expression of the styrene monooxygenase in Pseudomonas putida. Curr. Microbiol. 73: 248-254. https://doi.org/10.1007/s00284-016-1055-3
  11. Qu Y, Pi W, Ma F, Zhou J, Zhang X. 2010. Influence and optimization of growth substrates on indigo formation by a novel isolate Acinetobacter sp. PP-2. Bioresour. Technol. 101: 4527-4532. https://doi.org/10.1016/j.biortech.2010.01.033
  12. Han GH, Shin HJ, Kim SW. 2008. Optimization of bio-indigo production by recombinant E. coli harboring fmo gene. Enzyme Microb. Technol. 42: 617-623. https://doi.org/10.1016/j.enzmictec.2008.02.004
  13. Qu Y, Zhang X, Ma Q, Ma F, Zhang Q, Li X, et al. 2012. Indigo biosynthesis by Comamonas sp. MQ. Biotechnol. Lett. 34: 353-357. https://doi.org/10.1007/s10529-011-0778-2
  14. Doukyu N, Nakano T, Okuyama Y, Aono R. 2002. Isolation of Anacinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. Appl. Microbiol. Biotechnol. 58: 543-546. https://doi.org/10.1007/s00253-001-0919-y
  15. Ameria SPL, Jung HS, Kim HS, Han SS, Kim HS, Lee JH. 2015. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnol. Lett. 37: 1637-1644. https://doi.org/10.1007/s10529-015-1824-2
  16. Lin GH, Chen HP, Shu HY. 2015. Detoxification of indole by an indole-induced flavoprotein oxygenase from Acinetobacter baumannii. PLoS One 10: e0138798.
  17. Deeley MC, Yanofsky C. 1981. Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J. Bacteriol. 147.3: 787-796. https://doi.org/10.1128/jb.147.3.787-796.1981
  18. Fabara AN, Fraaije MW. 2020. An overview of microbial indigo-forming enzymes. Appl. Microbiol. Biotechnol. 104: 925-933. https://doi.org/10.1007/s00253-019-10292-5
  19. Ham S, Cho DH, Oh SJ, Hwang JH, Kim HJ, Shin N, et al. 2023. Enhanced production of bio-indigo in engineered Escherichia coli, reinforced by cyclopropane-fatty acid-acyl-phospholipid synthase from psychrophilic Pseudomonas sp. B14-6. J. Biotechnol. 366: 1-9. https://doi.org/10.1016/j.jbiotec.2023.02.008
  20. Burkovski A, Kramer R. 2002. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl. Microbiol. Biotechnol. 58: 265-274. https://doi.org/10.1007/s00253-001-0869-4
  21. Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N. 2013. Genetic engineering of Escherichia coli to enhance production of Ltryptophan. Appl. Microbiol. Biotechnol. 97: 7587-7596. https://doi.org/10.1007/s00253-013-5026-3
  22. Xie X, Xu L, Shi J, Xu Q, Chen N. 2012. Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW. J. Ind. Microbiol. Biotechnol. 39: 1549-1556. https://doi.org/10.1007/s10295-012-1155-4
  23. Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, et al. 2022. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb. Cell Fact. 21: 45.
  24. Li G, Young KD. 2013. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159: 402-410. https://doi.org/10.1099/mic.0.064139-0
  25. Lee SM, Cho DH, Jung HJ, Kim B, Kim SH, Bhatia SK, et al. 2022. Enhanced tolerance of Cupriavidus necator NCIMB 11599 to lignocellulosic derived inhibitors by inserting NAD salvage pathway genes. Bioprocess Biosyst. Eng. 45: 1719-1729. https://doi.org/10.1007/s00449-022-02779-9
  26. Giessen TW, Silver PA. 2016. A catalytic nanoreactor based on in vivo encapsulation of multiple enzymes in an engineered protein nanocompartment. ChemBioChem 17: 1931-1935. https://doi.org/10.1002/cbic.201600431
  27. Lee HS, Lee HJ, Kim B, Kim SH, Cho DH, Jung HJ, et al. 2022. Inhibition of cyclopropane fatty acid synthesis in the membrane of halophilic Halomonas socia CKY01 by kanamycin. Biotechnol. Bioprocess Eng. 27: 788-796. https://doi.org/10.1007/s12257-022-0086-9
  28. Jung HR, Choi TR, Han YH, Park YL, Park JY, Song HS, et al. 2020. Production of blue-colored polyhydroxybutyrate (PHB) by onepot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dyes Pig. 173: 107889.
  29. Cho DH, Kim HJ, Oh SJ, Hwang JH, Shin N, Bhatia SK, et al. 2023. Strategy for efficiently utilizing Escherichia coli cells producing isobutanol by combining isobutanol and indigo production systems. J. Biotechnol. 367: 62-70. https://doi.org/10.1016/j.jbiotec.2023.03.012
  30. Du L, Yue J, Zhu Y, Yin S. 2022. Production of indigo by recombinant Escherichia coli with expression of monooxygenase, tryptophanase, and molecular chaperone. Foods 11: 2117.
  31. Fabara AN, Fraaije MW. 2020. Production of indigo through the use of a dual-function substrate and a bifunctional fusion enzyme. Enzyme Microb. Technol. 142: 109692.
  32. Pinero-Fernandez S, Chimerel C, Keyser UF, Summers DK. 2011. Indole transport across Escherichia coli membranes. J. Bacteriol. 193: 1793-1798. https://doi.org/10.1128/JB.01477-10
  33. Chant EL, Summers DK. 2007. Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol. Microbiol. 63: 35-43. https://doi.org/10.1111/j.1365-2958.2006.05481.x
  34. Honore N, TCole S. 1989. Nucleotide sequence of the aroP gene encoding the general aromatic amino acid transport protein of Escherichia coli K-12: homology with yeast transport proteins. Nucleic Acids Res. 18: 653.
  35. Brown KD. 1970. Formation of aromatic amino acid pools in Escherichia coli K-12. J. Bacteriol. 104: 177-188 https://doi.org/10.1128/jb.104.1.177-188.1970
  36. Sarsero JP, Wookey PJ, Gollnick P, Yanofsky C, Pittard' AJ. 1991. A New family of integral membrane proteins involved in transport of aromatic amino acids in Escherichia coli. J. Bacteriol. 173: 3231-3234 https://doi.org/10.1128/jb.173.10.3231-3234.1991
  37. Yanofsky C, Horn V, Gollnickt P. 1991. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J. Bacteriol. 173: 6009-6017 https://doi.org/10.1128/jb.173.19.6009-6017.1991
  38. Zhao Z, Chen S, Wu D, Wu J, Chen J. 2012. Effect of gene knockouts of L-tryptophan uptake system on the production of Ltryptophan in Escherichia coli. Process Biochem. 47: 340-344. https://doi.org/10.1016/j.procbio.2011.11.009
  39. Heatwole VM, Somerville RL. 1991. Cloning, nucleotide sequence, and characterization of mtr, the structural gene for a tryptophanspecific permease of Escherichia coli K-12. J. Bacteriol. 173: 108-115. https://doi.org/10.1128/jb.173.1.108-115.1991
  40. Heatwole VM, Somerville RL. 1991. The Tryptophan-specific permease gene, mtr, is differentially regulated by the tryptophan and tyrosine repressors in Escherichia coli K-12. J. Bacteriol. 173: 3601-3604. https://doi.org/10.1128/jb.173.11.3601-3604.1991
  41. Gu P, Yang F, Li F, Liang Q, Qi Q. 2013. Knocking out analysis of tryptophan permeases in Escherichia coli for improving Ltryptophan production. Appl. Microbiol. Biotechnol. 97: 6677-6683. https://doi.org/10.1007/s00253-013-4988-5
  42. Liu Q, Cheng Y, Xie X, Xu Q, Chen N. 2012. Modification of tryptophan transport system and its impact on production of ltryptophan in Escherichia coli. Bioresour. Technol. 114: 549-554. https://doi.org/10.1016/j.biortech.2012.02.088
  43. Niu H, Li R, Liang Q, Qi Q, Li Q, Gu P. 2019. Metabolic engineering for improving l-tryptophan production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 46: 55-65. https://doi.org/10.1007/s10295-018-2106-5
  44. Zhao Z, Chen S, Wu D, Wu J, Chen J. 2012. Effect of gene knockouts of l-tryptophan uptake system on the production of l-tryptophan in Escherichia coli. Process Biochem. 47: 340-344. https://doi.org/10.1016/j.procbio.2011.11.009
  45. Ham S, Bhatia SK, Gurav R, Choi YK, Jeon JM, Yoon JJ, et al. 2022. Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system. Enzyme Microb. Technol. 155: 109904.
  46. Kim HJ, Jang S, Kim J, Yang YH, Kim YG, Kim BG, et al. 2017. Biosynthesis of indigo in Escherichia coli expressing self-sufficient CYP102A from Streptomyces cattleya. Dyes Pig. 140: 29-35. https://doi.org/10.1016/j.dyepig.2017.01.029
  47. Zhang Y, Chen H, Zhang Y, Yin H, Zhou C, Wang Y. 2021. Direct RBS engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli. Microb. Cell Fact. 20: 38.
  48. Du J, Yang D, Luo ZW, Lee SY. 2018. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J. Biotechnol. 267: 19-28. https://doi.org/10.1016/j.jbiotec.2017.12.026
  49. Luo J, Zhang X, Wang X, Pei J, Zhao L. 2023. Directional preparation of indigo or indirubin from indican by an alkali-resistant glucosidase under specific pH and temperature. Process Biochem. 125: 239-247. https://doi.org/10.1016/j.procbio.2022.12.015
  50. Yuk Y, Jang JH, Park SA, Park HA, Ahn JO, Yang YH, et al. 2023. Production of bio-indigo dye by surmounting its physical and chemical insoluble nature. Dyes Pigm. 218: 111466.