DOI QR코드

DOI QR Code

Prognostic Value of an Immune Long Non-Coding RNA Signature in Liver Hepatocellular Carcinoma

  • Rui Kong (Department of Gastroenterology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University) ;
  • Nan Wang (Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine) ;
  • Chun li Zhou (Department of Gastroenterology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University) ;
  • Jie Lu (Department of Gastroenterology, Pu Dong Area Gongli Hospital, School of Medicine, Shanghai University)
  • Received : 2023.08.14
  • Accepted : 2024.01.18
  • Published : 2024.04.28

Abstract

In recent years, there has been a growing recognition of the important role that long non-coding RNAs (lncRNAs) play in the immunological process of hepatocellular carcinoma (LIHC). An increasing number of studies have shown that certain lncRNAs hold great potential as viable options for diagnosis and treatment in clinical practice. The primary objective of our investigation was to devise an immune lncRNA profile to explore the significance of immune-associated lncRNAs in the accurate diagnosis and prognosis of LIHC. Gene expression profiles of LIHC samples obtained from TCGA database were screened for immune-related genes. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate Cox analysis. Then, the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were performed to evaluate the capability of the immune lncRNA signature as a prognostic indicator. Six long non-coding RNAs were identified via correlation analysis and Cox regression analysis considering their interactions with immune genes. Subsequently, tumor samples were categorized into two distinct risk groups based on different clinical outcomes. Stratification analysis indicated that the prognostic ability of this signature acted as an independent factor. The Kaplan-Meier method was employed to conduct survival analysis, results showed a significant difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Additionally, data obtained from gene set enrichment analysis (GSEA) revealed several potential biological processes in which these biomarkers may be involved. To summarize, this study demonstrated that this six-lncRNA signature could be identified as a potential factor that can independently predict the prognosis of LIHC patients.

Keywords

Acknowledgement

This study was supported by : (1) "Special Project for Scientific Research and Cultivation of Young Physician" of Gusu School, Nanjing Medical University (GSKY20230503) to Rui Kong. (2) Shanghai "Rising Stars of Medical Talent" Youth Development Program-Outstanding Youth Medical Talents (No.SHWJRS2021-99) to Jie Lu. (3) Shanghai Pudong New Area Science and Technology Commission (No.PKJ2021-Y10) to Jie Lu. (4) Specialty Feature Construction Project of Pudong Health and Family Planning Commission of Shanghai?PWZzb2022-14) to Jie Lu.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71: 209-249. https://doi.org/10.3322/caac.21660
  2. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, et al. 2000. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356: 802-807. https://doi.org/10.1016/S0140-6736(00)02654-4
  3. Dimitroulis D, Damaskos C, Valsami S, Davakis S, Garmpis N, Spartalis E, et al. 2017. From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world. World J. Gastroenterol. 23: 5282-5294. https://doi.org/10.3748/wjg.v23.i29.5282
  4. Bruix J, Sherman M. 2011. Management of hepatocellular carcinoma: an update. Hepatology 53: 1020-1022. https://doi.org/10.1002/hep.24199
  5. Forner A, Reig M, Bruix J. 2018. Hepatocellular carcinoma. Lancet 391: 1301-1314. https://doi.org/10.1016/S0140-6736(18)30010-2
  6. Sangro B, Sarobe P, Hervas-Stubbs S, Melero I. 2021. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 18: 525-543. https://doi.org/10.1038/s41575-021-00438-0
  7. Kairaluoma V, Kemi N, Huhta H, Pohjanen VM, Helminen O. 2021. Toll-like receptor 5 and 8 in hepatocellular carcinoma. APMIS 129: 470-479. https://doi.org/10.1111/apm.13142
  8. Pinna F, Bissinger M, Beuke K, Huber N, Longerich T, Kummer U, 2017. A20/TNFAIP3 discriminates tumor necrosis factor (TNF)-induced NF-kappaB from JNK pathway activation in hepatocytes. Front. Physiol. 8: 610.
  9. Pfister D, Nunez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, et al. 2021. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592: 450-456. https://doi.org/10.1038/s41586-021-03362-0
  10. Ruf B, Heinrich B, Greten TF. 2021. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol. Immunol. 18: 112-127. https://doi.org/10.1038/s41423-020-00572-w
  11. Rosenberg SA, Restifo NP. 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348: 62-68. https://doi.org/10.1126/science.aaa4967
  12. Huang ZM, Lai CX, Zuo MX, An C, Wang XC, Huang JH, 2020. Adjuvant cytokine-induced killer cells with minimally invasive therapies augmented therapeutic efficacy of unresectable hepatocellular carcinoma. J. Cancer Res. Ther. 16: 1603-1610. https://doi.org/10.4103/jcrt.JCRT_962_19
  13. Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. 2018. The immunology of hepatocellular carcinoma. Nat. Immunol. 19: 222-232. https://doi.org/10.1038/s41590-018-0044-z
  14. Kim HJ, Park S, Kim KJ, Seong J. 2018. Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular carcinoma patients treated with radiotherapy. Radiother. Oncol. 129: 130-135. https://doi.org/10.1016/j.radonc.2017.11.027
  15. Long J, Wang A, Bai Y, Lin J, Yang X, Wang D, 2019. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. Ebiomedicine 42: 363-374. https://doi.org/10.1016/j.ebiom.2019.03.022
  16. Zhang J, Han C, Song K, Chen W, Ungerleider N, Yao L, 2020. The long-noncoding RNA MALAT1 regulates TGF-beta/Smad signaling through formation of a lncRNA-protein complex with Smads, SETD2 and PPM1A in hepatic cells. PLoS One 15: e228160.
  17. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. 2012. Landscape of transcription in human cells. Nature 489: 101-108. https://doi.org/10.1038/nature11233
  18. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22: 1775-1789. https://doi.org/10.1101/gr.132159.111
  19. Lv X, Li Y, Li Y, Li H, Zhou L, Wang B, 2019. FAL1: a critical oncogenic long non-coding RNA in human cancers. Life Sci. 236: 116918.
  20. Holoch D, Moazed D. 2015. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16: 71-84. https://doi.org/10.1038/nrg3863
  21. Wang YL, Liu JY, Yang JE, Yu XM, Chen ZL, Chen YJ. 2019. Lnc-UCID promotes G1/S transition and hepatoma growth by preventing DHX9-mediated CDK6 down-regulation. Hepatology 70: 259-275. https://doi.org/10.1002/hep.30613
  22. Lin C, Xiang Y, Sheng J, Liu S, Cui M, Zhang X. 2020. Long non-coding RNA CRNDE promotes malignant progression of hepatocellular carcinoma through the miR-33a-5p/CDK6 axis. J. Physiol. Biochem. 76: 469-481. https://doi.org/10.1007/s13105-020-00754-0
  23. Song P, Li Y, Wang F, Pu L, Bao L, Gao H, et al. 2022. Genome-wide screening for differentially methylated long noncoding RNAs identifies LIFR-AS1 as an epigenetically regulated lncRNA that inhibits the progression of colorectal cancer. Clin. Epigenetics 14: 138.
  24. Wang C, Li D, Zhang L, Jiang S, Liang J, Narita Y, et al. 2019. RNA sequencing analyses of gene expression during epstein-barr virus infection of primary B lymphocytes. J. Virol. 93: e00226-19.
  25. Unfried JP, Marin-Baquero M, Rivera-Calzada A, Razquin N, Martin-Cuevas EM, de Braganca S, et al. 2021. Long noncoding RNA IHCOLE promotes ligation efficiency of DNA double-strand breaks in hepatocellular carcinoma. Cancer Res. 81: 4910-4925. https://doi.org/10.1158/0008-5472.CAN-21-0463
  26. Peng WX, Koirala P, Mo YY. 2017. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36: 5661-5667. https://doi.org/10.1038/onc.2017.184
  27. Su W, Guo C, Wang L, Wang Z, Yang X, Niu F, et al. 2019. LncRNA MIR22HG abrogation inhibits proliferation and induces apoptosis in esophageal adenocarcinoma cells via activation of the STAT3/c-Myc/FAK signaling. Aging (Albany NY) 11: 4587-4596. https://doi.org/10.18632/aging.102071
  28. Wang BG, Lv Z, Ding HX, Fang XX, Wen J, Xu Q, 2018. The association of lncRNA-HULC polymorphisms with hepatocellular cancer risk and prognosis. Gene 670: 148-154. https://doi.org/10.1016/j.gene.2018.05.096
  29. Wang Y, Chen F, Zhao M, Yang Z, Li J, Zhang S, et al. 2017. The long noncoding RNA HULC promotes liver cancer by increasing the expression of the HMGA2 oncogene via sequestration of the microRNA-186. J. Biol. Chem. 292: 15395-15407. https://doi.org/10.1074/jbc.M117.783738
  30. Zhang J, Han C, Ungerleider N, Chen W, Song K, Wang Y, et al. 2019. A transforming growth factor-beta and H19 signaling axis in tumor-initiating hepatocytes that regulates hepatic carcinogenesis. Hepatology 69: 1549-1563. https://doi.org/10.1002/hep.30153
  31. The Cancer genome atlas. https://portal.gdc.cancer.gov/. Accessed 26 October, 2022.
  32. Ensemble website. http://asia.ensembl.org/index.html. Accessed 26 October, 2022.
  33. Gene Set Enrichment Analysis. http://software.broadinstitute.org/gsea/msigdb/index.jsp. Accessed 02, November, 2022.
  34. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. https://doi.org/10.1101/gr.1239303
  35. Wang C, Gu Y, Zhang K, Xie K, Zhu M, Dai N, et al. 2016. Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types. Nat. Commun. 7: 10499.
  36. Li S, Zhang M, Zhang H, Hu K, Cai C, Wang J, et al. 2019. Exosomal long noncoding RNA lnc-GNAQ-6:1 may serve as a diagnostic marker for gastric cancer. Clin. Chim. Acta 501: 252-257. https://doi.org/10.1016/j.cca.2019.10.047
  37. Chao P, Yongheng F, Jin Z, Yu Z, Shiyong Y, Kunxing Y, et al. 2021. lncRNA HOTAIR knockdown suppresses gastric cancer cell biological activities. Food Sci. Nutr. 9: 123-134. https://doi.org/10.1002/fsn3.1970
  38. Vishnubalaji R, Hibah S, Elango R, Alajez NM. 2019. Noncoding RNAs as potential mediators of resistance to cancer immunotherapy. Semin. Cancer Biol. 35: 65-79. https://doi.org/10.1016/j.semcancer.2019.11.006
  39. DiStefano JK. 2017. Long noncoding RNAs in the initiation, progression, and metastasis of hepatocellular carcinoma. Noncoding RNA Res. 2: 129-136.
  40. Ni W, Zhang Y, Zhan Z, Ye F, Liang Y, Huang J, et al. 2017. A novel lncRNA uc.134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. J. Hematol. Oncol. 10: 91.
  41. Zhang D, Sun G, Zhang H, Tian J, Li Y. 2017. Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways. Biomed. Pharmacother. 85: 511-516. https://doi.org/10.1016/j.biopha.2016.11.058
  42. Jiang R, Tang J, Chen Y, Deng L, Ji J, Xie Y, 2017. The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat. Commun. 8: 15129.
  43. Liu X, Li M, Wang X, Dang Z, Jiang Y, Wang X, 2019. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol. Immunother. 68: 2041-2054. https://doi.org/10.1007/s00262-019-02426-5
  44. McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37: 457-495. https://doi.org/10.1146/annurev-immunol-041015-055318
  45. Matos LL, Dedivitis RA, Kulcsar M, de Mello ES, Alves V, Cernea CR. 2017. External validation of the AJCC Cancer Staging Manual, 8th edition, in an independent cohort of oral cancer patients. Oral Oncol. 71: 47-53. https://doi.org/10.1016/j.oraloncology.2017.05.020
  46. Zhou P, Lu Y, Zhang Y, Wang L. 2021.Construction of an immune-related six-lncRNA signature to predict the outcomes, immune cell infiltration, and immunotherapy response in patients with hepatocellular carcinoma. Front. Oncol. 11: 661758.
  47. Gao C, Zhou G, Cheng M, Feng L, Cao P, Zhou G. 2022. Identification of senescence-associated long non-coding RNAs to predict prognosis and immune microenvironment in patients with hepatocellular carcinoma. Front. Genet. 13: 956094.
  48. Zhou J, Xu L, Zhou H, Wang J, Xing X. 2023 Prediction of prognosis and chemotherapeutic sensitivity based on cuproptosis-associated lncRNAs in cervical squamous cell carcinoma and endocervical adenocarcinoma. Genes (Basel) 14: 1481.
  49. Zhong F, Liu S, Hu D, Chen L. 2022. LncRNA AC099850.3 promotes hepatocellular carcinoma proliferation and invasion through PRR11/PI3K/AKT axis and is associated with patients prognosis. J. Cancer 13: 1048-1060. https://doi.org/10.7150/jca.66092
  50. Bird TG, Dimitropoulou P, Turner RM, Jenks SJ, Cusack P, Hey S, et al. 2016. Alpha-fetoprotein detection of hepatocellular carcinoma leads to a standardized analysis of dynamic AFP to improve screening based detection. PLoS One 11: e156801.
  51. Johnson P, Zhou Q, Dao DY, Lo Y. 2022. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 19: 670-681. https://doi.org/10.1038/s41575-022-00620-y
  52. Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, 2018. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology 154: 1706-1718. https://doi.org/10.1053/j.gastro.2018.01.064
  53. Galle PR, Foerster F, Kudo M, Chan SL, Llovet JM, Qin S, et al. 2019. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 39: 2214-2229. https://doi.org/10.1111/liv.14223
  54. Van Hees S, Michielsen P, Vanwolleghem T. 2016. Circulating predictive and diagnostic biomarkers for hepatitis B virus-associated hepatocellular carcinoma. World J. Gastroenterol. 22: 8271-8282. https://doi.org/10.3748/wjg.v22.i37.8271
  55. Sterling RK, Wright EC, Morgan TR, Seeff LB, Hoefs JC, Di Bisceglie AM, et al. 2012. Frequency of elevated hepatocellular carcinoma (HCC) biomarkers in patients with advanced hepatitis C. Am. J. Gastroenrol. 107: 64-74. https://doi.org/10.1038/ajg.2011.312
  56. Bennett CL, Dastidar SG, Ling SC, Malik B, Ashe T, Wadhwa M, et al. 2018. Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Aacta Neuropathol. 136: 425-443. https://doi.org/10.1007/s00401-018-1852-9
  57. Wymer KM, Daneshmand S, Pierorazio PM, Pearce SM, Harris KT, Eggener SE. 2017. Mildly elevated serum alpha-fetoprotein (AFP) among patients with testicular cancer may not be associated with residual cancer or need for treatment. Ann. Oncol. 28: 899-902. https://doi.org/10.1093/annonc/mdx012
  58. Sun W, Yang Y, Xu C, Guo J. 2017. Regulatory mechanisms of long noncoding RNAs on gene expression in cancers. Cancer Genet. 216-217: 105-110. https://doi.org/10.1016/j.cancergen.2017.06.003
  59. Huang D, Chen J, Yang L, Ouyang Q, Li J, Lao L, et al. 2018. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol. 19: 1112-1125. https://doi.org/10.1038/s41590-018-0207-y
  60. Wu W, Chen F, Cui X, Yang L, Chen J, Zhao J, et al. 2018. LncRNA NKILA suppresses TGF-beta-induced epithelial-mesenchymal transition by blocking NF-κB signaling in breast cancer. Int. J. Cancer 143: 2213-2224. https://doi.org/10.1002/ijc.31605
  61. Zhou Y, Huan L, Wu Y, Bao C, Chen B, Wang L, 2019. LncRNA ID2-AS1 suppresses tumor metastasis by activating the HDAC8/ID2 pathway in hepatocellular carcinoma. Cancer Lett. 469: 399-409. https://doi.org/10.1016/j.canlet.2019.11.007