DOI QR코드

DOI QR Code

Melanin Inhibitory Effect of Tuber himalayense Isolated in Incheon, Korea

  • Byeong Min Choi (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University) ;
  • Minkyeong Kim (Biodiversity Research Department Species Diversity Research Division, National Institute of Biological Resources) ;
  • Hyehyun Hong (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University) ;
  • Tae-Jin Park (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University) ;
  • Changmu Kim (Biodiversity Research Department Species Diversity Research Division, National Institute of Biological Resources) ;
  • Jin-Soo Park (Natural Product Informatics Research Center, Korea Institute of Science and Technology) ;
  • Won-Jae Chi (Biodiversity Research Department Species Diversity Research Division, National Institute of Biological Resources) ;
  • Seung-Young Kim (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University)
  • Received : 2023.11.15
  • Accepted : 2024.01.18
  • Published : 2024.04.28

Abstract

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 ㎍/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.

Keywords

Acknowledgement

This research was supported by a grant from the National Institute of Biological Resources (NIBR) funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202203112).

References

  1. Solano F, Briganti S, Picardo M, Ghanem G. 2006. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19: 550-571. https://doi.org/10.1111/j.1600-0749.2006.00334.x
  2. Yoon NY, Eom TK, Kim MM, Kim SK. 2009. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J. Agric. Food Chem. 57: 4124-4129. https://doi.org/10.1021/jf900006f
  3. D'Mello SA, Finlay GJ, Baguley BC. Askarian-Amiri ME. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17: 1144.
  4. Agar N, Young AR. 2005. Melanogenesis: a photoprotective response to DNA damage. Mutat. Res. 571: 121-132. https://doi.org/10.1016/j.mrfmmm.2004.11.016
  5. Maresca V, Flori E, Bellei B, Aspite N, Kovacs D, Picardo M. 2010. MC1R stimulation by alpha-MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell Melanoma Res. 23: 263-275. https://doi.org/10.1111/j.1755-148X.2010.00673.x
  6. Galibert MD, Carreira S, Goding CR. 2001. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced tyrosinase expression. EMBO J. 20: 5022-5031. https://doi.org/10.1093/emboj/20.17.5022
  7. Chung YC, Ko JH, Kang HK, Kim S, Kang CI, Lee JN, et al. 2018. Antimelanogenic effects of Polygonum tinctorium flower extract from traditional Jeju fermentation via upregulation of extracellular signal-regulated kinase and protein kinase B activation. Int. J. Mol. Sci. 19: 2895.
  8. Ando H, Kondoh H, Ichihashi M, Hearing VJ. 2007. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J. Invest. Dermatol. 127: 751-761. https://doi.org/10.1038/sj.jid.5700683
  9. Del Marmol V, Ito S, Jackson I, Vachtenheim J, Berr P, Ghanem G, et al. 1993. TRP-1 expression correlates with eumelanogenesis in human pigment cells in culture. FEBS Lett. 327: 307-310. https://doi.org/10.1016/0014-5793(93)81010-W
  10. Lee SE, Hwang HJ, Ha JS, Jeong HS, Kim JH. 2003. Screening of medicinal plant extracts for antioxidant activity. Life Sci. 73: 167-179. https://doi.org/10.1016/S0024-3205(03)00259-5
  11. Yoon MY. 2013. A study on anti-oxidant activity and anti-inflammatory action of sea buckthorn seed extract. KSBB J. 28: 327-331. https://doi.org/10.7841/ksbbj.2013.28.5.327
  12. Desmedt B, Rogiers V, Courselle P, De Beer JO, De Paepe K, Deconinck E. 2013. Development and validation of a fast chromatographic method for screening and quantification of legal and illegal skin whitening agents. J. Pharm. Biomed. Anal. 83: 82-88. https://doi.org/10.1016/j.jpba.2013.04.020
  13. Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, et al. 2023. Targeting tyrosinase in hyperpigmentation: current status, limitations and future promises. Biochem. Pharmacol. 212: 115574.
  14. Ando S, Ando O, Suemoto Y, Mishima Y. 1993. Tyrosinase gene transcription and its control by melanogenic inhibitors. J. Invest. Dermatol. 100: 150S-155S. https://doi.org/10.1038/jid.1993.68
  15. Butler MS. 2004. The role of natural product chemistry in drug discovery. J. Nat. Prod. 67: 2141-2153. https://doi.org/10.1021/np040106y
  16. Patel S, Rauf A, Khan H, Khalid S, Mubarak MS. 2017. Potential health benefits of natural products derived from truffles: a review. Trends Food Sci. Technol. 70: 1-8. https://doi.org/10.1016/j.tifs.2017.09.009
  17. Lee H, Nam K, Zahra Z, Farooqi MQU. 2020. Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biol. Biotechnol. 7: 9.
  18. Park H, Gwon JH, Lee JC, Eom AH. 2021. Report on a new truffle species, Tuber koreanum sp. nov., from Korea. Mycobiology 49: 527-533. https://doi.org/10.1080/12298093.2021.1992089
  19. Park H, Gwon JH, Lee JC, Kim HS, Seo GS, Eom AH. 2021. Morphological and phylogenetic characteristics of Tuber himalayense collected from rhizosphere of Quercus dentata in Korea. Kor. J. Mycol. 49:101-108.
  20. Kim M, Hong H, Kim JH, Kim SY, Kim C. 2021. Anti-inflammatory activity of indigenous Tuber himalayense in Korea. J. Mushrooms 19: 176-183.
  21. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34: 828-837. https://doi.org/10.1038/nbt.3597
  22. Videira IF, Moura DF, Magina S. 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88:76-83. https://doi.org/10.1590/S0365-05962013000100009
  23. Maeda K, Fukuda M. 1996. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 276: 765-769.
  24. Lee CJ, Park SK, Kang JY, Kim JM, Yoo SK, Han HJ, et al. 2019. Melanogenesis regulatory activity of the ethyl acetate fraction from Arctium lappa L. leaf on α-MSH-induced B16/F10 melanoma cells. Ind. Crops Prod. 138: 111581.
  25. Tomita Y, Seiji M. 1977. Inactivation mechanism of tyrosinase in mouse melanoma. J. Dermatol. 4: 245-249. https://doi.org/10.1111/j.1346-8138.1977.tb00994.x
  26. Ngeow KC, Friedrichsen HJ, Li L, Zeng Z, Andrews S, Volpon L, et al. 2018. BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc. Natl. Acad. Sci. USA 115: E8668-E8677. https://doi.org/10.1073/pnas.1810498115
  27. Mansky KC, Sankar U, Han J, Ostrowski MC. 2002. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J. Biol. Chem. 277: 11077-11083. https://doi.org/10.1074/jbc.M111696200
  28. Tachibana M. 2000. MITF: a stream flowing for pigment cells. Pigment Cell Res. 13: 230-240. https://doi.org/10.1034/j.1600-0749.2000.130404.x
  29. Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Iida M, et al. 2011. Molecular network associated with MITF in skin melanoma development and progression. J. Skin Cancer 2011: 730170.
  30. Kim HM, Moon MY, Hyun CG. 2023. Citrulluside T, isolated from the Citrullus lanatus stem, inhibits melanogenesis in α-MSH-induced mouse B16F10 cells. Cosmetics 10: 108.
  31. Fitzpatrick TB, Becker Jr SW, Lerner AB, Montgomery H. 1950. Tyrosinase in human skin: demonstration of its presence and of its role in human melanin formation. Science 112: 2904.
  32. Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, et al. 1994. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13: 5818-5825. https://doi.org/10.1002/j.1460-2075.1994.tb06925.x
  33. Ortonne JP, Ballotti R. 2000. Melanocyte biology and melanogenesis: what's new? J. Dermatolog Treat. 11: 15-26. https://doi.org/10.1080/09546630050517621
  34. Couteau C, Coiffard L. 2016. Overview of skin whitening agents: drugs and cosmetic products. Cosmetics 3: 27.
  35. Burger P, Landreau A, Azoulay S, Michel T, Fernandez X. 2016. Skin whitening cosmetics: feedback and challenges in the development of natural skin lighteners. Cosmetics 3: 36.
  36. Smit N, Vicanova J, Stan P. 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10: 5326-5349. https://doi.org/10.3390/ijms10125326
  37. Kim MY, Lee HE, Im M, Lee Y, Kim CD, Lee JH, et al. 2014. Effect of adenosine on melanogenesis in B16 cells and zebrafish. Ann. Dermatol. 26: 209-213. https://doi.org/10.5021/ad.2014.26.2.209