DOI QR코드

DOI QR Code

Secretory Production of the Hericium erinaceus Laccase from Saccharomyces cerevisiae

  • Jin Kang (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Thuat Van La (Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST)) ;
  • Mi-Jin Kim (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jung-Hoon Bae (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Bong Hyun Sung (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seonghun Kim (Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST)) ;
  • Jung-Hoon Sohn (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2023.12.28
  • 심사 : 2024.01.03
  • 발행 : 2024.04.28

초록

Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and ⳑ-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-β-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grants (NRF-2022M3J5A1056169, 2021M3A9I5023254, 2019R1A2C1090726, and 2018M3A9H3024746), a National Research Council of Science & Technology grant (No. CAP20024-200) of the Korean government (MSIT) and the Research Initiative Program of KRIBB.

참고문헌

  1. Mitchard ETA. 2018. The tropical forest carbon cycle and climate change. Nature 559: 527-534.  https://doi.org/10.1038/s41586-018-0300-2
  2. Sharma V, Tsai ML, Nargotra P, Chen CW, Sun PP, Singhania RR, et al. 2023. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: a comprehensive review. Sci. Total Environ. 861: 160560. 
  3. Coman C, Mot AC, Gal E, Parvu M, Silaghi-Dumitrescu R. 2013. Laccase is upregulated via stress pathways in the phytopathogenic fungus Sclerotinia sclerotiorum. Fungal Biol. 117: 528-539.  https://doi.org/10.1016/j.funbio.2013.05.005
  4. Senthivelan T, Kanagaraj J, Panda R. 2016. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach-a review. Biotechnol. Bioprocess Eng. 21: 19-38.  https://doi.org/10.1007/s12257-015-0278-7
  5. Lee S, Kang M, Bae JH, Sohn JH, Sung BH. 2019. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives. Front. Bioeng. Biotechnol. 7: 209. 
  6. Pezzella C, Guarino L, Piscitelli A. 2015. How to enjoy laccases. Cell. Mol. Life Sci. 72: 923-940.  https://doi.org/10.1007/s00018-014-1823-9
  7. La TV, Sung BH, Kim S. 2023. Biocatalytic characterization of Hericium erinaceus laccase isoenzymes for the oxidation of lignin derivative substrates. Int. J. Biol. Macromol. 241: 124658. 
  8. Lee S, Kang M, Jung CD, Bae JH, Lee JY, Park YK, et al. 2023. Development of novel recombinant peroxidase secretion system from Pseudomonas putida for lignin valorisation. Bioresour. Technol. 388: 129779. 
  9. Valimets S, Pedetti P, Virginia LJ, Hoang MN, Sauer M, Peterbauer C. 2023. Secretory expression of recombinant small laccase genes in Gram-positive bacteria. Microb. Cell Fact. 22: 72. 
  10. Mo Y, Lao HI, Au SW, Li IC, Hu J, Yuen HM, et al. 2022. Expression, secretion and functional characterization of three laccases in E. coli. Synth. Syst. Biotechnol. 7: 474-480.  https://doi.org/10.1016/j.synbio.2021.12.002
  11. Wang TN, Zhao M. 2017. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Appl. Microbiol. Biotechnol. 101: 685-696.  https://doi.org/10.1007/s00253-016-7897-6
  12. Xu Z, Peng B, Kitata RB, Nicora CD, Weitz KK, Pu Y, et al. 2022. Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas putida KT2440 via secretomic analysis. Biotechnol. Biofuels Bioprod. 15: 117. 
  13. De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. 2023. Challenges and progress towards industrial recombinant protein production in yeasts: a review. Biotechnol. Adv. 64: 108121. 
  14. Bae JH, Sung BH, Kim HJ, Park SH, Lim KM, Kim MJ, et al. 2015. An efficient genome-wide fusion partner screening system for secretion of recombinant proteins in yeast. Sci. Rep. 5: 12229. 
  15. Lee CR, Sung BH, Lim KM, Kim MJ, Sohn MJ, Bae JH, Sohn JH. 2017. Co-fermentation using recombinant Saccharomyces cerevisiae yeast strains hyper-secreting different cellulases for the production of cellulosic bioethanol. Sci. Rep. 7: 4428. 
  16. Sharma J, Kumar V, Prasad R, Gaur NA. 2022. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnol. Adv. 56: 107925. 
  17. Bae JH, Kim MJ, Sung BH, Jin YS, Sohn JH. 2021. Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae. Biotechnol. Biofuels 14: 223. 
  18. Karaoglan M. 2023. Alternative secretory signal sequences for recombinant protein production in Pichia pastoris. Enzyme Microb. Technol. 168: 110256. 
  19. Ko H, Kim MJ, Kim HJ, Kang J, Lee HY, Lee JH, et al. 2023. Efficient valorization of food waste oils to renewable biodiesel by a Candida antarctica lipase B mutant that catalyzes the ester synthesis reaction in the presence of water. J. Clean. Prod. 428: 139336. 
  20. Percival-Smith A, Segall J. 1987. Increased copy number of the 5' end of the SPS2 gene inhibits sporulation of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 2484-2490.  https://doi.org/10.1128/MCB.7.7.2484
  21. Manning BD, Padmanabha R, Snyder M. 1997. The Rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cytoskeletal functions in Saccharomyces cerevisiae. Mol. Biol. Cell 8: 1829-1844.  https://doi.org/10.1091/mbc.8.10.1829
  22. Yin QY, de Groot PW, Dekker HL, de Jong L, Klis FM, de Koster CG. 2005. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J. Biol. Chem. 280: 20894-20901.  https://doi.org/10.1074/jbc.M500334200
  23. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. 2017. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7: 10480. 
  24. Bienert S, Waterhouse A, de Beer Tjaart AP, Tauriello G, Studer G, Bordoli L, et al. 2016. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 45: D313-D319.  https://doi.org/10.1093/nar/gkw1132
  25. Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. 2019. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 36: 1765-1771.  https://doi.org/10.1093/bioinformatics/btz828
  26. Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. 2021. ProMod3-A versatile homology modelling toolbox. PLoS Comput. Biol. 17: e1008667. 
  27. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296-W303.  https://doi.org/10.1093/nar/gky427
  28. Gupta R, Brunak S. 2002. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 2002: 310-322. 
  29. Xu G, Wu Y, Zhang Y, Fang W, Xiao Y, Fang Z. 2019. Role of N-glycosylation on the specific activity of a Coprinopsis cinerea laccase Lcc9 expressed in Pichia pastoris. J. Biosci. Bioeng. 128: 518-524.  https://doi.org/10.1016/j.jbiosc.2019.05.004
  30. Lin TY, Wu CH. 2005. Activation of hydrogen peroxide in copper(II)/amino acid/H2O2 systems: effects of pH and copper speciation. J. Catal. 232: 117-126.  https://doi.org/10.1016/j.jcat.2005.01.038
  31. Min K, Yum T, Kim J, Woo HM, Kim Y, Sang BI, et al. 2017. Perspectives for biocatalytic lignin utilization: cleaving 4-O-5 and C(α)-C(β) bonds in dimeric lignin model compounds catalyzed by a promiscuous activity of tyrosinase. Biotechnol. Biofuels 10: 212.