DOI QR코드

DOI QR Code

Heat-Killed Enterococcus faecium KU22001 Having Effective Anti-Cancer Effects on HeLa Cell Lines at a Lower Temperature

  • Jun-Su Ha (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Na-Kyoung Lee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Hyun-Dong Paik (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2023.10.31
  • Accepted : 2023.12.26
  • Published : 2024.04.28

Abstract

The anti-cancer effects of heat-killed Enterococcus faecium KU22001 (KU22001), KU22002, and KU22005 isolated from human infant feces were investigated. The anti-proliferative activity of these strains against various cancer cell lines was evaluated using the MTT assay. To determine the production of exopolysaccharides (EPS) with potential anti-cancer effect, ethanol precipitation and phenol-sulfuric acid method was used with the cell free supernatant of strains grown at 25℃ or 37℃. The EPS yield of E. faecium strains was higher at 25℃ than at 37℃. Among these E. faecium strains, KU22001 grown at 25℃ was associated with the highest bax/bcl-2 ratio, effective apoptosis rate, cell cycle arrest in the G0/G1 phase, and condensation of the nucleus in the cervical cancer HeLa cell line. In conclusion, these results suggest that KU22001 can be beneficial owing to the anti-cancer effects and production of functional materials, such as EPS.

Keywords

Acknowledgement

This paper was supported by Konkuk University Researcher Fund in 2023 and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Innovational Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (#321035-5).

References

  1. Graham K, Stack H, Rea R. 2020. Safety, beneficial and technological properties of enterococci for use in functional food applications-a review. Crit. Rev. Food Sci. Nutr. 606: 3836-3861.
  2. Yerlikaya O, Akbulut N. 2020. In vitro characterisation of probiotic properties of Enterococcus faecium and Enterococcus durans strains isolated from raw milk and traditional dairy products. Int. J. Dairy Technol. 73: 98-107.
  3. Wada Y, Harun AB, Yean CY, Mohamad Nasir NM, Zaidah AR. 2020. Vancomycin-resistant enterococcus, obesity and antibiotics: is there a possible link?. Obes. Med. 18: 100226.
  4. Krawczyk B, Wityk P, Galecka M, Michalik M. 2021. The many faces of Enterococcus spp.-commensal, probiotic and opportunistic pathogen. Microorganisms 19: 1900.
  5. Ojha AK, Shah NP, Mishra V, Emanuel N, Taneja NK. 2023. Prevalence of antibiotic resistance in lactic acid bacteria isolated from traditional fermented Indian food products. Food Sci. Biotechnol. 32: 2131-2143.
  6. Terkuran M, Turhan EU, Erginkaya Z. 2019. The risk of vancomycin resistant enterococci infections from food industry, pp. 513-535. In: Malik A, Erginkaya Z, Erten H (eds.) Health and Safety Aspects of Food Processing Technologies. Springer, Cham.
  7. Kataria J, Li N, Wynn JL, Neu J. 2009. Probiotic microbes: Do they need to be alive to be beneficial?. Nutr. Rev. 67: 546-550.
  8. Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Fact. 19: 168.
  9. Sharma N, Kang DK, Paik HD, Park YS. 2022. Beyond probiotics: a narrative review on an era of revolution. Food Sci. Biotechnol. 32: 413-421.
  10. Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. 2020. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr. 61: 1787-1803.
  11. Lee NK, Park YS, Kang DK, Paik HD. 2023. Paraprobiotics: Definition, manufacturing methods, and functionality. Food Sci. Biotechnol. 32: 1981-1991.
  12. Shenderov BA. 2013. Metabiotics: novel idea or natural development of probiotic conception. Microb. Ecol. Health Dis. 24: 20399.
  13. Singhal B, Vishwakarma V, Singh A. 2019. Metabiotics: the functional metabolic signatures of probiotics: Current state-of-art and future research priorities-metabiotics: Probiotics effector molecules. Adv. Biosci Biotechnol. 9: 147-189.
  14. Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. 2018. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front. Microbiol. 9: 2426.
  15. Loeffler M, Hilbig J, Velasco L, Weiss J. 2020. Usage of in situ exopolysaccharide-forming lactic acid bacteria in food production: meat products-a new field of application?. Compr. Rev. Food Sci. Food Saf. 19: 2932-2954.
  16. Rabha B, Nadra RS, Ahmed B. 2012. Effect of some fermentation substrates and growth temperature on exopolysaccharide production by Streptococcus thermophilus BN1. Int. J. Biosci. Biochem. Bioinform. 2: 44-47.
  17. Zhao J. 2021. Doctor dissertation, Okayama University, https://ousar.lib.okayama-.ac.jp/files/public/6/62969/20211203105434335463/K0006518_fulltext.pdf. Accessed Mar. 20, 2023.
  18. De Maayer P, Anderson D, Cary C, Cowan DA. 2014. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15: 508-517.
  19. Li S, Shah NP. 2016. Characterization, anti-inflammatory and antiproliferative activities of natural and sulfonated exopolysaccharides from Streptococcus thermophilus ASCC 1275. J. Food Sci. 81: M1167-M1176.
  20. Nguyen DT, Nguyen TH. 2014. Detection on antioxidant and cytotoxicity activities of exopolysaccharides isolated in plant originated Lactococcus lactis. Biomed. Pharmacol. J. 7: 33-38.
  21. Zaman S, Wang R, Gandhi V. 2014. Targeting the apoptosis pathway in hematologic malignancies. Leuk. Lymphoma 55: 1980-1992.
  22. Kim DW, Park MH, Kim M. 2023. Study on antioxidant activity and cytotoxicity of Aronia melanocarpa leaf tea extracts. Food Sci. Biotechnol. 32: 1423-1433.
  23. Khue NTH, Ngoc NH. 2013. Exopolysaccharide in Lactobacillus rhamnosus Pn04 after co-culture with Leuconostoc mesenteroides Vtcc-B-643. J. Appl. Pharm. 3: 14-17.
  24. Li W, Ji J, Chen X, Jiang M, Rui X, Dong M. 2014. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 102: 351-359.
  25. Hwang CH, Lee NK, Paik HD. 2022. The anti-cancer potential of heat-killed Lactobacillus brevis KU15176 upon AGS cell lines through intrinsic apoptosis pathway. Int. J. Mol. Sci. 23: 4073.
  26. Sakthivel R, Malar DS, Devi KP. 2018. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed. Pharmacother. 15: 742-752.
  27. Xiao Y, Yang FQ, Li SP, Hu G, Lee SM, Wang YT. 2008. Essential oil of Curcuma wenyujin induces apoptosis in human hepatoma cells. World J. Gastroenterol. 14: 4309-4318.
  28. Riaz Rajoka MS, Zhao H, Lu Y, Lian Z; Li N, Hussain N, et al. 2018. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct. 9: 2705-2715.
  29. Di W, Zhang L, Yi H, Han X, Zhang Y, Xin L. 2018. Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol. Lett. 16: 3577-3586.
  30. Wu Z, Wang G, Pan D, Guo Y, Zeng X, Sun Y, Cao J. 2016. Inflammation-related pro-apoptotic activity of exopolysaccharides isolated from Lactococcus lactis subsp. lactis. Benef. Microbes 7: 761-768.
  31. Ghada SI, Manal GM, Mohsen MSA, Eman AG. 2012. Production and biological evaluation of exopolysaccharide from isolated Rhodotorula glutinins. Aust. J. Basic Appl. Sci. 6: 401-408.
  32. Vidhyalakshmi R, Vallinachiyar C. 2013. Apoptosis of human breast cancer cells (MCF-7) induced by polysacccharides produced by bacteria. J. Cancer Sci. Ther. 5: 31-34.
  33. Wasser S. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60: 258-274.
  34. Diemer SK, Svensson B, Babol LN, Cockburn D, Grijpstra P, Dijkhuizen L, et al. 2012. Binding interactions between α-glucans from Lactobacillus reuteri and milk proteins characterised by surface plasmon resonance. Food Biophys. 7: 220-226.
  35. Sutherland IW. 2001. Microbial polysaccharides from Gram-negative bacteria. Int. Dairy J. 11: 663-674.
  36. Green DR. The mitochondrial pathway of apoptosis: Part I: MOMP and beyond. Cold Spring Harb. Perspect. Biol. 14: a041038.
  37. Tait SW, Ichim G, Green DR. 2014. Die another way-non-apoptotic mechanisms of cell death. J. Cell Sci. 127: 2135-2144.
  38. Lartigue L, Kushnareva Y, Seong Y, Lin H, Faustin B, Newmeyer DD. 2009. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell. 20: 4871-4884
  39. Ong RC, Lei J, Lee RK, Cheung JY, Fung KP, Lin C, et al. 2008. Polyphyllin D induces mitochondrial fragmentation and acts directly on the mitochondria to induce apoptosis in drug-resistant HepG2 cells. Cancer Lett. 261: 158-164.
  40. Jaattela M, Tschopp J. 2003. Caspase-independent cell death in T lymphocytes. Nat. Immunol. 4: 416-423.