DOI QR코드

DOI QR Code

Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis

  • Seon Ha Jo (Department of Food Science and Biotechnology, Seoul National University of Science and Technology) ;
  • Kyeong Ah Jo (Department of Food Science and Biotechnology, Seoul National University of Science and Technology) ;
  • Soo-yeon Park (Department of Food Science and Biotechnology, Seoul National University of Science and Technology) ;
  • Ji Yeon Kim (Department of Food Science and Biotechnology, Seoul National University of Science and Technology)
  • Received : 2024.01.08
  • Accepted : 2024.02.03
  • Published : 2024.04.28

Abstract

The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.

Keywords

Acknowledgement

This research was part of a project titled 'Development of functional food material derived from marine resources, microalgae Euglena gracilis', which was funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. Piovan A, Filippini R, Corbioli G, Costa VD, Giunco EMV, Burbello G, et al. 2021. Carotenoid extract derived from Euglena gracilis overcomes lipopolysaccharide-induced neuroinflammation in microglia: role of NF-κB and Nrf2 signaling pathways. Mol. Neurobiol. 58: 3515-3528. https://doi.org/10.1007/s12035-021-02353-6
  2. Nakashima A, Horio Y, Suzuki K, Isegawa Y. 2021. Antiviral activity and underlying action mechanism of Euglena extract against influenza virus. Nutrients 13: 3911.
  3. Kondo Y, Kato A, Hojo H, Nozoe S, Takeuchi M, Ochi K. 1992. Cytokine-related immunopotentiating activities of paramylon, a β-(1→3)-D-glucan from Euglena gracilis. J. Pharmacobiodyn. 15: 617-621. https://doi.org/10.1248/bpb1978.15.617
  4. Barsanti L, Vismara R, Passarelli V, Gualtieri P. 2001. Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J. Appl. Phycol. 13: 59-65. https://doi.org/10.1023/A:1008105416065
  5. Gissibl A, Sun A, Care A, Nevalainen H, Sunna A. 2019. Bioproducts from Euglena gracilis: synthesis and applications. Front. Bioeng. Biotechnol. 7: 108.
  6. Sugiyama A, Hata S, Suzuki K, Yoshida E, Nakano R, Mitra S, et al. 2010. Oral administration of paramylon, a beta-1,3-D-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Vet. Med. Sci. 72: 755-763. https://doi.org/10.1292/jvms.09-0526
  7. Okouchi R, E S, Yamamoto K, Ota T, Seki K, Imai M, et al. 2019. Simultaneous intake of Euglena gracilis and vegetables exerts synergistic anti-obesity and anti-inflammatory effects by modulating the gut microbiota in diet-induced obese mice. Nutrients 11: 204.
  8. Yang H, Choi K, Kim KJ, Park SY, Jeon JY, Kim BG, et al. 2022. Immunoenhancing effects of Euglena gracilis on a cyclophosphamideinduced immunosuppressive mouse model. J. Microbiol. Biotechnol. 32: 228-237. https://doi.org/10.4014/jmb.2112.12035
  9. Park S, Kim KJ, Jo SM, Jeon JY, Kim BR, Hwang JE, et al. 2023. Euglena gracilis (Euglena) powder supplementation enhanced immune function through natural killer cell activity in apparently healthy participants: a randomized, double-blind, placebo-controlled trial. Nutr. Res. 119: 90-97.
  10. Jo KA, Kim KJ, Park S, Jeon JY, Hwang JE, Kim JY. 2023. Evaluation of the effects of Euglena gracilis on enhancing immune responses in RAW264.7 cells and a cyclophosphamide-induced mouse model. J. Microbiol. Biotechnol. 33: 493-499. https://doi.org/10.4014/jmb.2212.12041
  11. Maggini S, Beveridge S, Sorbara P, Senatore G. 2008. Feeding the immune system: the role of micronutrients in restoring resistance to infections. CABI Reviews https://doi.org/10.1079/PAVSNNR20083098.
  12. Germic N, Frangez Z, Yousefi S, Simon HU. 2019. Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ. 26: 715-727. https://doi.org/10.1038/s41418-019-0297-6
  13. Gottschalk RA, Martins AJ, Angermann BR, Dutta B, Ng CE, Uderhardt S, et al. 2016. Distinct NF-κB and MAPK activation thresholds uncouple steady-state microbe sensing from anti-pathogen inflammatory responses. Cell Syst. 2: 378-390. https://doi.org/10.1016/j.cels.2016.04.016
  14. Fink LN, Frokiaer H. 2008. Dendritic cells from Peyer's patches and mesenteric lymph nodes differ from spleen dendritic cells in their response to commensal gut bacteria. Scand. J. Immunol. 68: 270-279. https://doi.org/10.1111/j.1365-3083.2008.02136.x
  15. Keely S, Walker MM, Marks E, Talley NJ. 2015. Immune dysregulation in the functional gastrointestinal disorders. Eur. J. Clin. Investig. 45: 1350-1359. https://doi.org/10.1111/eci.12548
  16. Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. 2017. The etiopathogenesis of atopic dermatitis: barrier disruption, immunological derangement, and pruritus. Inflamm. Regen. 37: 14.
  17. Luebke RW, Parks C, Luster MI. 2004. Suppression of immune function and susceptibility to infections in humans: association of immune function with clinical disease. J. Immunotoxicol. 1: 15-24. https://doi.org/10.1080/15476910490438342
  18. Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. 2015. Phytotrapy of cyclophosphamide-induced immunosuppression. Environ. Toxicol. Pharmacol. 39: 1262-1275. https://doi.org/10.1016/j.etap.2015.04.012
  19. Meng Y, Li B, Jin D, Zhan M, Lu J, Huo G. 2018. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr. Res. 21: 62.
  20. Jimenez-Valera M, Moreno E, Amat MA, Ruiz-Bravo A. 2003. Modification of mitogen-driven lymphoproliferation by ceftriaxone in normal and immunocompromised mice. Int. J. Antimicrob. Agents 22: 607-612. https://doi.org/10.1016/j.ijantimicag.2003.04.001
  21. Bendich A, Shapiro SS. 1986. Effect of beta-carotene and canthaxanthin on the immune responses of the rat. J. Nutr. 116: 2254-2262. https://doi.org/10.1093/jn/116.11.2254
  22. Sudhagar A, Kumar G, El-Matbouli M. 2018. Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: a comprehensive review. Int. J. Mol. Sci. 19: 245.
  23. Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, et al. 2019. Prospective genotyping of Hepatocellular Carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 25: 2116-2126. https://doi.org/10.1158/1078-0432.CCR-18-2293
  24. Dheilly NM, Adema C, Raftos DA, Gourbal B, Grunau C, Du Pasquier L. 2014. No more non-model species: the promise of next generation sequencing for comparative immunology. Dev. Compar. Immunol. 45: 56-66. https://doi.org/10.1016/j.dci.2014.01.022
  25. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34: 525-527. https://doi.org/10.1038/nbt.3519
  26. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. 2022. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50: W216-w221. https://doi.org/10.1093/nar/gkac194
  27. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47: D607-d613. https://doi.org/10.1093/nar/gky1131
  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. https://doi.org/10.1101/gr.1239303
  29. Binns D, Dimmer E, Huntley R, Barrell D, O'Donovan C, Apweiler R. 2009. QuickGO: a web-based tool for gene ontology searching. Bioinformatics 25: 3045-3046. https://doi.org/10.1093/bioinformatics/btp536
  30. Chen J, Zhang XD, Jiang Z. 2013. The application of fungal β-glucans for the treatment of colon cancer. Anticancer Agents Med. Chem. 13: 725-730. https://doi.org/10.2174/1871520611313050007
  31. Wang J, Tong X, Li P, Cao H, Su W. 2012. Immuno-enhancement effects of Shenqi Fuzheng injection on cyclophosphamide-induced immunosuppression in Balb/c mice. J. Ethnopharmacol. 139: 788-795. https://doi.org/10.1016/j.jep.2011.12.019
  32. Williams MB, Butcher EC. 1997. Homing of naive and memory T lymphocyte subsets to Peyer's patches, lymph nodes, and spleen. J. Immunol. 159: 1746-1752. https://doi.org/10.4049/jimmunol.159.4.1746
  33. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. 2017. Transcriptome profiling in human diseases: new advances and perspectives. Int. J. Mol. Sci. 18: 1652.
  34. Suzuki K, Nakashima A, Igarashi M, Saito K, Konno M, Yamazaki N, et al. 2018. Euglena gracilis Z and its carbohydrate storage substance relieve arthritis symptoms by modulating Th17 immunity. PLoS One 13: e0191462.
  35. Pandya AD, Al-Jaderi Z, Hoglund RA, Holmoy T, Harbo HF, Norgauer J, et al. 2011. Identification of human NK17/NK1 cells. PLoS One 6: e26780.
  36. Huang L, Wang M, Yan Y, Gu W, Zhang X, Tan J, et al. 2018. OX40L induces helper T cell differentiation during cell immunity of asthma through PI3K/AKT and P38 MAPK signaling pathway. J. Transl. Med. 16: 74.
  37. Wolken J, Mellon A. 1956. The relationship between chlorophyll and the carotenoids in the algal flagellate, Euglena. J. Gen. Physiol. 39: 675.
  38. Foletta VC, Segal DH, Cohen DR. 1998. Transcriptional regulation in the immune system: all roads lead to AP-1. J. Leukoc. Biol. 63: 139-152. https://doi.org/10.1002/jlb.63.2.139
  39. Wang X, Sun L, He N, An Z, Yu R, Li C, et al. 2021. Increased expression of CXCL2 in ACPA-positive rheumatoid arthritis and its role in osteoclastogenesis. Clin. Exp. Immunol. 203: 194-208. https://doi.org/10.1111/cei.13527
  40. Kelley JM, Hughes LB, Bridges SL Jr. 2008. Does gamma-aminobutyric acid (GABA) influence the development of chronic inflammation in rheumatoid arthritis? J. Neuroinflammation 5: 1.
  41. Bhandage AK, Barragan A. 2021. GABAergic signaling by cells of the immune system: more the rule than the exception. Cell. Mol. Life Sci. 78: 5667-5679. https://doi.org/10.1007/s00018-021-03881-z
  42. Cai W, Li H, Zhang Y, Han G. 2020. Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. PeerJ. 8: e8390.
  43. Monmai C, Park SH, You S, Park WJ. 2018. Immuno-enhancement effect of polysaccharide extracted from Stichopus japonicus on cyclophosphamide-induced immunosuppression mice. Food Sci. Biotechnol. 27: 565-573. https://doi.org/10.1007/s10068-017-0248-2
  44. Lin X, Sun Q, Zhou L, He M, Dong X, Lai M, et al. 2018. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2- mediated Th17 responses. Mucosal Immunol. 11: 1663-1673. https://doi.org/10.1038/s41385-018-0018-3
  45. Calvayrac R, Laval-Martin D, Briand J, Farineau J. 1981. Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O2 pressure. Planta 153: 6-13. https://doi.org/10.1007/BF00385311
  46. Bendich A. 1989. Carotenoids and the immune response. J. Nutr. 119: 112-115. https://doi.org/10.1093/jn/119.1.112
  47. Yao R, Fu W, Du M, Chen ZX, Lei AP, Wang JX. 2022. Carotenoids biosynthesis, accumulation, and applications of a model microalga Euglenagracilis. Mar. Drugs 20: 496.
  48. Pyo MY, Park B, Choi JJ, Yang M, Yang HO, Cha JW, et al. 2013. Pheophytin a and chlorophyll a identified from environmentally friendly cultivation of green pepper enhance interleukin-2 and interferon-γ in Peyer's patches ex vivo Biol. Pharm. Bull. 36: 1747-1753. https://doi.org/10.1248/bpb.b13-00302
  49. Piovan A, Filippini R, Corbioli G, Costa VD, Giunco EMV, Burbello G, et al. 2021. Carotenoid extract derived from Euglena gracilis overcomes lipopolysaccharide-induced neuroinflammation in microglia: role of NF-κB and Nrf2 signaling pathways. Mol. Neurobiol. 58: 3515-3528. https://doi.org/10.1007/s12035-021-02353-6