과제정보
This work was supported by funds derived from a National Research Foundation of Korea (NRF) grant from the Korean Government (2020R1F1A107239713, RS-2023-00210305) for SYS and (NRF-2021R1A4A1031220) for SO. This paper was supported by research funds for newly appointed professors of Jeonbuk National University in 2020.
참고문헌
- Zhihong Sun, Hugh MB Harris, Angela McCann, Chenyi Guo, Silvia Argimon, Wenyi Zhang, et al. 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 6: 8322.
- Liu YW, Liong MT, Tsai YC. 2018. New perspectives of Lactobacillus plantarum as a probiotic: the gut-heart-brain axis. J. Microbiol. 56: 601-613. https://doi.org/10.1007/s12275-018-8079-2
- Pathmakanthan S, Li CK, Cowie J, Hawkey CJ. 2004. Lactobacillus plantarum 299: beneficial in vitro immunomodulation in cells extracted from inflamed human colon. J. Gastroenterol. Hepatol. 19: 166-73. https://doi.org/10.1111/j.1440-1746.2004.03181.x
- Vareille-Delarbre M, Miquel S, Garcin S, Bertran T, Balestrino D, Evrard B, et al. 2019. Immunomodulatory effects of Lactobacillus plantarum on inflammatory response induced by Klebsiella pneumoniae. Infect. Immun. 87: 10-1128. https://doi.org/10.1128/IAI.00570-19
- Roberta Prete, Natalia Garcia-Gonzalez, Carla D Di Mattia, Aldo Corsetti, Natalia Battista. 2020. Food-borne Lactiplantibacillus plantarum protect normal intestinal cells against inflammation by modulating reactive oxygen species and IL-23/IL-17 axis. Sci. Rep. 10: 16340.
- Kazmierczak-Siedlecka K, Daca A, Folwarski M, Witkowski JM, Bryl E, Makarewicz W. 2020. The role of Lactobacillus plantarum 299v in supporting treatment of selected diseases. Cent. Eur. J. Immunol. 45: 488-493. https://doi.org/10.5114/ceji.2020.101515
- Bisutti IL, Hirt K, Stephan D. 2015. Influence of different growth conditions on the survival and the efficacy of freeze-dried Pseudomonas fluorescens strain Pf153. Biocontrol. Sci. Technol. 25: 1269-1284. https://doi.org/10.1080/09583157.2015.1044498
- Gao X, Kong J, Zhu H, Mao B, Cui S, Zhao J. 2022. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: mechanisms and application of cross-protection to improve resistance against freeze-drying. J. Appl. Microbiol. 132: 802-821. https://doi.org/10.1111/jam.15251
- Mbye M, Baig MA, AbuQamar SF, El-Tarabily KA, Obaid RS, Osaili TM, Ayyash MM, et al. 2020. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr. Rev. Food Sci. Food Saf. 19: 1110-1124. https://doi.org/10.1111/1541-4337.12554
- Bergenholtz AS, Wessman P, Wuttke A, Hakansson S. 2012. A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying. Cryobiology 64: 152-159. https://doi.org/10.1016/j.cryobiol.2012.01.002
- Chen MJ, Tang HY, Chiang ML. 2017. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol. 66: 20-27. https://doi.org/10.1016/j.fm.2017.03.020
- Li Y, Yan P, Lei Q, Li B, Sun Y, Li S, Xie N, et al. 2019. Metabolic adapt ability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments. J. Ind. Microbiol. Biotechnol. 46: 1491-1503. https://doi.org/10.1007/s10295-019-02225-y
- Leon MJ, Hoffmann T, Sanchez-Porro C, Heider J, Ventosa A, Bremer E. 2018. Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: physiology and genomics. Front. Microbiol. 9: 108.
- Al-Naseri A, Bowman JP, Wilson R, Nilsson RE, Britz ML. 2013. Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of tween 80. J. Proteome Res. 12: 5313-5322. https://doi.org/10.1021/pr400661g
- Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8: 313-323. https://doi.org/10.1007/BF02010671
- Hobby GL, Meyer K, Chaffee E. 1942. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med. 50: 281-285. https://doi.org/10.3181/00379727-50-13773
- Kim JS, Chowdhury N, Yamasaki R, Wood TK. 2018. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol. 20: 2038-2048. https://doi.org/10.1111/1462-2920.14075
- Um HY, Kong HG, Lee HJ, Choi HK, Park EJ, Kim ST, et al. 2013. Altered Gene Expression and intracellular changes of the viable but nonculturable state in Ralstonia solanacearum by copper treatment. Plant Pathol. J. 29: 374-85. https://doi.org/10.5423/PPJ.OA.07.2013.0067
- Van den Bergh B, Fauvart M, Michiels J. 2017. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 41: 219-251. https://doi.org/10.1093/femsre/fux001
- Song S, Wood TK. 2020. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem. Biophys. Res. Commun. 523: 281-286. https://doi.org/10.1016/j.bbrc.2020.01.102
- Tagami K, Nanamiya H, Kazo Y, Maehashi M, Suzuki S, Kawamura F, et al. 2012. Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. MicrobiologyOpen 1: 115-134. https://doi.org/10.1002/mbo3.16
- Yamasaki R, Song S, Benedik MJ, Wood TK. 2020. Persister cells resuscitate using membrane sensors that activate chemotaxis, lower cAMP levels, and revive ribosomes. Iscience 23: 100792.
- Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15: 453-464. https://doi.org/10.1038/nrmicro.2017.42
- De Man JC, Rogosa D, Sharpe ME. 1960. A medium for the cultivation of lactobacilli. J. Appl. Microbiol. 23: 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
- Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. 2020. β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 208: 112829.
- Kim JS, Wood TK. 2016. Persistent persister misperceptions. Front. Microbiol. 208: 112829.
- Kim JS, Yamasaki R, Song S, Zhang W, Wood TK. 2018. Single cell observations show persister cells wake based on ribosome content. Environ. Microbiol. 20: 2085-2098. https://doi.org/10.1111/1462-2920.14093
- Kim JS, Wood TK. 2017. Tolerant, growing cells from nutrient shifts are not persister cells. MBio 8: 10-1128.
- Martinez OV, Gratzner HG, Malinin TI, Ingram M. 1982. The effect of some beta-lactam antibiotics on Escherichia coli studied by flow cytometry. Cytometry 3: 129-133. https://doi.org/10.1002/cyto.990030211
- Yao Z, Kahne D, Kishony R. 2012. Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol. Cell 48: 705-712. https://doi.org/10.1016/j.molcel.2012.09.016
- Fan X, Bao T, Yi H, Zhang Z, Zhang K, Liu X, Feng Z, et al. 2021. Ribosome profiling and RNA sequencing reveal genome-wide cellular translation and transcription regulation under osmotic stress in Lactobacillus rhamnosus ATCC 53103 Front. Microbiol. 12: 781454.
- Anjum N, Maqsood S, Masud T, Ahmad A, Sohail A, Momin A. 2014. Lactobacillus acidophilus: characterization of the species and application in food production. Crit. Rev. Food Sci. Nutr. 54: 1241-1251. https://doi.org/10.1080/10408398.2011.621169
- Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A, Nally K, et al. 2012. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile lactobacilli. PLoS One 7: e40592.
- Rohde M. 2019. The Gram-positive bacterial cell wall. Microbiol. Spectr. 7. doi: 10.1128/microbiolspec.GPP3-0044-2018.
- Wu C, Zhang J, Wang M, Du G, Chen J. 2012. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biotechnol. 39: 1031-1039. https://doi.org/10.1007/s10295-012-1104-2