DOI QR코드

DOI QR Code

Phloroglucinol Enhances Anagen Signaling and Alleviates H2O2-Induced Oxidative Stress in Human Dermal Papilla Cells

  • Seokmuk Park (Department of Cosmetics Engineering, Konkuk University) ;
  • Ye Jin Lim (Department of Cosmetics Engineering, Konkuk University) ;
  • Hee Su Kim (Department of Cosmetics Engineering, Konkuk University) ;
  • Hee-Jae Shin (Department of Cosmetics Engineering, Konkuk University) ;
  • Ji-Seon Kim (Department of Cosmetics Engineering, Konkuk University) ;
  • Jae Nam Lee (Department of Cosmetology, Graduate School of Engineering, Konkuk University) ;
  • Jae Ho Lee (Department of Cosmetics Engineering, Konkuk University) ;
  • Seunghee Bae (Department of Cosmetics Engineering, Konkuk University)
  • 투고 : 2023.11.30
  • 심사 : 2024.02.27
  • 발행 : 2024.04.28

초록

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.

키워드

과제정보

The authors are grateful to the Department of Cosmetics Engineering, Konkuk University, for supporting the use of research facilities.

참고문헌

  1. Houschyar KS, Borrelli MR, Tapking C, Popp D, Puladi B, Ooms M, et al. 2020. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms. Dermatology 236: 271-280.  https://doi.org/10.1159/000506155
  2. Choi BY. 2018. Hair-growth potential of ginseng and its major metabolites: a review on its molecular mechanisms. Int. J. Mol. Sci. 19: 2703. 
  3. Madaan A, Verma R, Singh AT, Jaggi M. 2018. Review of hair follicle dermal papilla cells as in vitro screening model for hair growth. Int. J. Cosmet. Sci. 40: 429-450.  https://doi.org/10.1111/ics.12489
  4. Ji S, Zhu Z, Sun X, Fu X. 2021. Functional hair follicle regeneration: an updated review. Signal Transduct. Target. Ther. 6: 66. 
  5. Nilforoushzadeh M, Rahimi Jameh E, Jaffary F, Abolhasani E, Keshtmand G, Zarkob H, et al. 2017. Hair follicle generation by injections of adult human follicular epithelial and dermal papilla cells into nude mice. Cell J. 19: 259-268. 
  6. Lin WH, Xiang LJ, Shi HX, Zhang J, Jiang LP, Cai PT, et al. 2015. Fibroblast growth factors stimulate hair growth through beta-catenin and Shh expression in C57BL/6 mice. Biomed Res. Int. 2015: 730139. 
  7. Kinoshita-Ise M, Tsukashima A, Kinoshita T, Yamazaki Y, Ohyama M. 2020. Altered FGF expression profile in human scalp-derived fibroblasts upon WNT activation: implication of their role to provide folliculogenetic microenvironment. Inflamm. Regen. 40: 35. 
  8. Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. 2014. Signaling involved in hair follicle morphogenesis and development. Int. J. Mol. Sci. 15: 1647-1670.  https://doi.org/10.3390/ijms15011647
  9. Shin DW. 2022. The molecular mechanism of natural products activating Wnt/beta-catenin signaling pathway for improving hair loss. Life (Basel) 12: 1856. 
  10. Lin BJ, Zhu JY, Ye J, Lu SD, Liao MD, Meng XC, et al. 2020. LncRNA-XIST promotes dermal papilla induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cell. Signal. 72: 109623. 
  11. Hwang SB, Park HJ, Lee BH. 2022. Hair-growth-promoting effects of the fish collagen peptide in human dermal papilla cells and C57BL/6 mice modulating Wnt/beta-catenin and BMP signaling pathways. Int. J. Mol. Sci. 23. 
  12. Cotsarelis G, Millar SE. 2001. Towards a molecular understanding of hair loss and its treatment. Trends Mol Med. 7: 293-301.  https://doi.org/10.1016/S1471-4914(01)02027-5
  13. Williamson D, Gonzalez M, Finlay AY. 2001. The effect of hair loss on quality of life. J. Eur. Acad. Dermatol. Venereol. 15: 137-139.  https://doi.org/10.1046/j.1468-3083.2001.00229.x
  14. Rushton DH. 2002. Nutritional factors and hair loss. Clin. Exp. Dermatol. 27: 396-404.  https://doi.org/10.1046/j.1365-2230.2002.01076.x
  15. Brajac I, Tkalcic M, Dragojevic DM, Gruber F. 2003. Roles of stress, stress perception and trait-anxiety in the onset and course of alopecia areata. J. Dermatol. 30: 871-878.  https://doi.org/10.1111/j.1346-8138.2003.tb00341.x
  16. McElwee KJ, Gilhar A, Tobin DJ, Ramot Y, Sundberg JP, Nakamura M, et al. 2013. What causes alopecia areata? Exp. Dermatol. 22: 609-626.  https://doi.org/10.1111/exd.12209
  17. Kaufman KD. 2002. Androgens and alopecia. Mol. Cell. Endocrinol. 198: 89-95.  https://doi.org/10.1016/S0303-7207(02)00372-6
  18. Magro CM, Rossi A, Poe J, Manhas-Bhutani S, Sadick N. 2011. The role of inflammation and immunity in the pathogenesis of androgenetic alopecia. J. Drugs Dermatol. 10: 1404-1411. 
  19. Katsarou-Katsari A, Singh LK, Theoharides TC. 2001. Alopecia areata and affected skin CRH receptor upregulation induced by acute emotional stress. Dermatology 203: 157-161.  https://doi.org/10.1159/000051732
  20. Bahta AW, Farjo N, Farjo B, Philpott MP. 2008. Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression. J. Invest. Dermatol. 128: 1088-1094.  https://doi.org/10.1038/sj.jid.5701147
  21. Deng Y, Wang M, He Y, Liu F, Chen L, Xiong X. 2023. Cellular senescence: ageing and androgenetic alopecia. Dermatology 239: 533-541.  https://doi.org/10.1159/000530681
  22. Wang Y, Sui Y, Lian A, Han X, Liu F, Zuo K, et al. 2021. PBX1 attenuates hair follicle-derived mesenchymal stem cell senescence and apoptosis by alleviating reactive oxygen species-mediated DNA damage instead of enhancing DNA damage repair. Front. Cell. Dev. Biol. 9: 739868. 
  23. Jung YH, Chae CW, Choi GE, Shin HC, Lim JR, Chang HS, et al. 2022. Cyanidin 3-O-arabinoside suppresses DHT-induced dermal papilla cell senescence by modulating p38-dependent ER-mitochondria contacts. J. Biomed. Sci. 29: 17. 
  24. Shin JY, Kim J, Choi YH, Kang NG, Lee S. 2021. Dexpanthenol promotes cell growth by preventing cell senescence and apoptosis in cultured human hair follicle cells. Curr. Issues Mol. Biol. 43: 1361-1373.  https://doi.org/10.3390/cimb43030097
  25. Devjani S, Ezemma O, Kelley KJ, Stratton E, Senna M. 2023. Androgenetic alopecia: therapy update. Drugs 83: 701-715.  https://doi.org/10.1007/s40265-023-01880-x
  26. Suchonwanit P, Thammarucha S, Leerunyakul K. 2019. Minoxidil and its use in hair disorders: a review. Drug Des. Devel. Ther. 13: 2777-2786.  https://doi.org/10.2147/DDDT.S214907
  27. Gupta AK, Venkataraman M, Talukder M, Bamimore MA. 2022. Finasteride for hair loss: a review. J. Dermatolog. Treat. 33: 1938-1946.  https://doi.org/10.1080/09546634.2021.1959506
  28. Cao JQ, Huang XJ, Li YT, Wang Y, Wang L, Jiang RW, et al. 2016. Callistrilones A and B, triketone-phloroglucinol-monoterpene hybrids with a new skeleton from Callistemon rigidus. Org. Lett. 18: 120-123.  https://doi.org/10.1021/acs.orglett.5b03360
  29. Daus M, Wunnoo S, Voravuthikunchai SP, Saithong S, Poldorn P, Jungsuttiwong S, et al. 2022. Phloroglucinol-meroterpenoids from the leaves of Eucalyptus camaldulensis Dehnh. Phytochemistry 200: 113179. 
  30. Ding XY, Wen JR, Lin WY, Huang GY, Feng Q, Duan L, et al. 2023. Phloroglucinol derivatives, coumarins and an alkaloid from the roots of Evodia lepta Merr. Phytochemistry 213: 113774. 
  31. Daikonya A, Katsuki S, Wu JB, Kitanaka S. 2002. Anti-allergic agents from natural sources (4): anti-allergic activity of new phloroglucinol derivatives from Mallotus philippensis (Euphorbiaceae). Chem. Pharm. Bull (Tokyo) 50: 1566-1569.  https://doi.org/10.1248/cpb.50.1566
  32. Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. 2022. Phloroglucinol and its derivatives: antimicrobial properties toward microbial pathogens. J. Agric. Food Chem. 70: 4817-4838.  https://doi.org/10.1021/acs.jafc.2c00532
  33. Marasinghe CK, Jung WK, Je JY. 2023. Phloroglucinol possesses anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 signaling pathway in LPS-stimulated RAW264.7 murine macrophages. Immunopharmacol. Immunotoxicol. 45: 571-580. 
  34. Zhang YB, Li W, Jiang L, Yang L, Chen NH, Wu ZN, et al. 2018. Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 153: 111-119.  https://doi.org/10.1016/j.phytochem.2018.05.018
  35. Park C, Cha HJ, Hong SH, Kim GY, Kim S, Kim HS, et al. 2019. Protective effect of phloroglucinol on oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in HaCaT human keratinocytes. Mar. Drugs 17: 225. 
  36. Piao MJ, Kim KC, Kang KA, Fernando P, Herath H, Hyun JW. 2021. Phloroglucinol attenuates ultraviolet B-induced 8-oxoguanine formation in human HaCaT keratinocytes through Akt and Erk-mediated Nrf2/Ogg1 signaling pathways. Biomol. Ther. 29: 90-97.  https://doi.org/10.4062/biomolther.2020.059
  37. Piao MJ, Ahn MJ, Kang KA, Kim KC, Zheng J, Yao CW, et al. 2014. Phloroglucinol inhibits ultraviolet B radiation-induced oxidative stress in the mouse skin. Int. J. Radiat. Biol. 90: 928-935.  https://doi.org/10.3109/09553002.2014.911990
  38. Kim KC, Piao MJ, Cho SJ, Lee NH, Hyun JW. 2012. Phloroglucinol protects human keratinocytes from ultraviolet B radiation by attenuating oxidative stress. Photodermatol. Photoimmunol. Photomed. 28: 322-331.  https://doi.org/10.1111/phpp.12010
  39. Ng NS, Ooi L. 2021. A simple microplate assay for reactive oxygen species generation and rapid cellular protein normalization. Bio Protoc. 11: e3877. 
  40. Park S, Han N, Lee JM, Lee JH, Bae S. 2023. Effects of Allium hookeri extracts on hair-inductive and anti-oxidative properties in human dermal papilla cells. Plants (Basel, Switzerland). 12: 1919. 
  41. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. 2009. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4: 1798-1806.  https://doi.org/10.1038/nprot.2009.191
  42. Blackman AJ, Rogers GI, Volkman JK. 1988. Phloroglucinol derivatives from three Australian marine algae of the genus Zonaria. J. Nat. Prod. 51: 158-160.  https://doi.org/10.1021/np50055a027
  43. Singh IP, Sidana J, Bansal P, Foley WJ. 2009. Phloroglucinol compounds of therapeutic interest: global patent and technology status. Exp. Opin. Ther. Pat. 19: 847-866.  https://doi.org/10.1517/13543770902916614
  44. Bak SS, Sung YK, Kim SK. 2014. 7-Phloroeckol promotes hair growth on human follicles in vitro. Naunyn Schmiedebergs Arch. Pharmacol. 387: 789-793.  https://doi.org/10.1007/s00210-014-0986-0
  45. Kang JI, Kim SC, Kim MK, Boo HJ, Jeon YJ, Koh YS, et al. 2012. Effect of dieckol, a component of Ecklonia cava, on the promotion of hair growth. Int. J. Mol. Sci. 13: 6407-6423.  https://doi.org/10.3390/ijms13056407
  46. Iida M, Ihara S, Matsuzaki T. 2007. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Dev. Growth Differ. 49: 185-195.  https://doi.org/10.1111/j.1440-169X.2007.00907.x
  47. du Cros DL, LeBaron RG, Couchman JR. 1995. Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J. Invest. Dermatol. 105: 426-431.  https://doi.org/10.1111/1523-1747.ep12321131
  48. Suzuki K, Yamanishi K, Mori O, Kamikawa M, Andersen B, Kato S, et al. 2000. Defective terminal differentiation and hypoplasia of the epidermis in mice lacking the Fgf10 gene. FEBS Lett. 481: 53-56.  https://doi.org/10.1016/S0014-5793(00)01968-2
  49. Rosenquist TA, Martin GR. 1996. Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev. Dyn. 205: 379-386.  https://doi.org/10.1002/(SICI)1097-0177(199604)205:4<379::AID-AJA2>3.0.CO;2-F
  50. Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. 2010. Beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18: 633-642.  https://doi.org/10.1016/j.devcel.2010.01.016
  51. Zhou L, Yang K, Xu M, Andl T, Millar SE, Boyce S, et al. 2016. Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity. FEBS J. 283: 2823-2835.  https://doi.org/10.1111/febs.13784
  52. Kiso M, Hamazaki TS, Itoh M, Kikuchi S, Nakagawa H, Okochi H. 2015. Synergistic effect of PDGF and FGF2 for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro. J. Dermatol. Sci. 79: 110-118.  https://doi.org/10.1016/j.jdermsci.2015.04.007
  53. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. 2022. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 7: 3. 
  54. Rao TP, Kuhl M. 2010. An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106: 1798-1806.  https://doi.org/10.1161/CIRCRESAHA.110.219840
  55. Nie X, Liu H, Liu L, Wang YD, Chen WD. 2020. Emerging roles of Wnt ligands in human colorectal cancer. Front. Oncol. 10: 1341. 
  56. Choi BY. 2020. Targeting Wnt/β-catenin pathway for developing therapies for hair loss. Int. J. Mol. Sci. 21: 4915. 
  57. Dong L, Hao H, Xia L, Liu J, Ti D, Tong C, et al. 2014. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Sci. Rep. 4: 5432. 
  58. Kishimoto J, Burgeson RE, Morgan BA. 2000. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14: 1181-1185.  https://doi.org/10.1101/gad.14.10.1181
  59. Kandyba E, Kobielak K. 2014. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling. Stem Cells 32: 886-901.  https://doi.org/10.1002/stem.1599
  60. Wu Z, Zhu Y, Liu H, Liu G, Li F. 2020. Wnt10b promotes hair follicles growth and dermal papilla cells proliferation via Wnt/β-catenin signaling pathway in Rex rabbits. Biosci. Rep. 40: BSR20191248. 
  61. Choi BY. 2020. Targeting Wnt/β-catenin pathway for developing therapies for hair loss. Int. J. Mol. Sci. 21: 4915. 
  62. Lu GQ, Wu ZB, Chu XY, Bi ZG, Fan WX. 2016. An investigation of crosstalk between Wnt/β-catenin and transforming growth factor-β signaling in androgenetic alopecia. Medicine 95: e4297. 
  63. Werner J, Boonekamp KE, Zhan T, Boutros M. 2023. The roles of secreted Wnt ligands in cancer. Int. J. Mol. Sci. 24: 5349. 
  64. Koch S. 2021. Regulation of Wnt signaling by FOX transcription factors in cancer. Cancers 13: 3446. 
  65. Park HB, Kim JW, Baek KH. 2020. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int. J. Mol. Sci. 21: 3904. 
  66. Rim EY, Clevers H, Nusse R. 2022. The Wnt pathway: From signaling mechanisms to synthetic modulators. Ann. Rev. Biochem. 91: 571-598.  https://doi.org/10.1146/annurev-biochem-040320-103615
  67. Tian Q, Jin H, Cui Y, Guo C, Lu X. 2005. Regulation of Wnt gene expression. Dev. Growth Differ. 47: 273-281.  https://doi.org/10.1111/j.1440-169X.2005.00804.x
  68. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. 2022. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 7: 3. 
  69. Gao C, Xiao G, Hu J. 2014. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci. 4: 13. 
  70. Liu C, Li Y, Semenov M, Han C, Baeg G-H, Tan Y, et al. 2002. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108: 837-847.  https://doi.org/10.1016/S0092-8674(02)00685-2
  71. Zhao L, Zhao J, Zhong K, Tong A, Jia D. 2022. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct. Target. Ther. 7: 113. 
  72. White KA, Grillo-Hill BK, Esquivel M, Peralta J, Bui VN, Chire I, et al. 2018. β-Catenin is a pH sensor with decreased stability at higher intracellular pH. J. Cell Biol. 217: 3965-3976.  https://doi.org/10.1083/jcb.201712041
  73. Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X. 1999. beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl. Acad. Sci. USA 96: 6273-6278.  https://doi.org/10.1073/pnas.96.11.6273
  74. Fang X, Yu SX, Lu Y, Bast RC, Jr., Woodgett JR, Mills GB. 2000. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. USA 97: 11960-11965.  https://doi.org/10.1073/pnas.220413597
  75. Zhou X, Wang H, Burg MB, Ferraris JD. 2013. Inhibitory phosphorylation of GSK-3β by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP). Am. J. Physiol. Renal Physiol. 304: F908-917.  https://doi.org/10.1152/ajprenal.00591.2012
  76. Bae S, Yoon YG, Kim JY, Park IC, An S, Lee JH, et al. 2022. Melatonin increases growth properties in human dermal papilla spheroids by activating AKT/GSK3β/β-catenin signaling pathway. PeerJ. 10: e13461. 
  77. Driskell RR, Clavel C, Rendl M, Watt FM. 2011. Hair follicle dermal papilla cells at a glance. J. Cell Sci. 124: 1179-1182.  https://doi.org/10.1242/jcs.082446
  78. Morgan BA. 2014. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harbor Perspect. Med. 4: a015180. 
  79. Roh C, Tao Q, Lyle S. 2004. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiol. Genomics 19: 207-217.  https://doi.org/10.1152/physiolgenomics.00134.2004
  80. Lee YR, Bae S, Kim JY, Lee J, Cho DH, Kim HS, et al. 2019. Monoterpenoid loliolide regulates hair follicle inductivity of human dermal papilla cells by activating the Akt/beta-catenin signaling pathway. J. Microbiol. Biotechnol. 29: 1830-1840.  https://doi.org/10.4014/jmb.1908.08018
  81. Queguineur B, Goya L, Ramos S, Martin MA, Mateos R, Bravo L. 2012. Phloroglucinol: antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food Chem. Toxicol. 50: 2886-2893.  https://doi.org/10.1016/j.fct.2012.05.026
  82. Kang KA, Lee KH, Chae S, Zhang R, Jung MS, Ham YM, et al. 2006. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J. Cell. Biochem. 97: 609-620.  https://doi.org/10.1002/jcb.20668
  83. So MJ, Cho EJ. 2014. Phloroglucinol attenuates free radical-induced oxidative stress. Prev. Nutr. Food Sci. 19: 129-135.  https://doi.org/10.3746/pnf.2014.19.3.129
  84. Dell'Orco M, Milani P, Arrigoni L, Pansarasa O, Sardone V, Maffioli E, et al. 2016. Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration. Biochim. Biophys. Acta 1859: 315-323.  https://doi.org/10.1016/j.bbagrm.2015.11.009
  85. Chiang SK, Chen SE, Chang LC. 2021. The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells 10: 2401. 
  86. Leiser SF, Miller RA. 2010. Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol. Cell. Biol. 30: 871-884.  https://doi.org/10.1128/MCB.01145-09
  87. Suzuki M, Otsuki A, Keleku-Lukwete N, Yamamoto M. 2016. Overview of redox regulation by Keap1-Nrf2 system in toxicology and cancer. Curr. Opinion Toxicol. 1: 29-36.  https://doi.org/10.1016/j.cotox.2016.10.001
  88. Ohn J, Kim SJ, Choi SJ, Choe YS, Kwon O, Kim KH. 2018. Hydrogen peroxide (H2O2) suppresses hair growth through downregulation of β-catenin. J. Dermatol. Sci. 89: 91-94.  https://doi.org/10.1016/j.jdermsci.2017.09.003
  89. Huang WY, Huang YC, Huang KS, Chan CC, Chiu HY, Tsai RY, et al. 2017. Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction. J. Dermatol. Sci. 86: 114-122.  https://doi.org/10.1016/j.jdermsci.2017.01.003
  90. Vano-Galvan S, Camacho F. 2017. New treatments for hair loss. Actas Dermosifiliogr. 108: 221-228.  https://doi.org/10.1016/j.ad.2016.11.010
  91. Taghiabadi E, Nilforoushzadeh MA, Aghdami N. 2020. Maintaining hair inductivity in human dermal papilla cells: a review of effective methods. Skin Pharmacol. Physiol. 33: 280-292.  https://doi.org/10.1159/000510152
  92. Woo WM, Zhen HH, Oro AE. 2012. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev. 26: 1235-1246.  https://doi.org/10.1101/gad.187401.112
  93. Hwang SB, Park HJ, Lee BH. 2022. Hair-growth-promoting effects of the fish collagen peptide in human dermal papilla cells and C57BL/6 mice modulating Wnt/β-catenin and BMP signaling pathways. Int. J. Mol. Sci. 23: 11904. 
  94. Deng Z, Chen M, Liu F, Wang Y, Xu S, Sha K, et al. 2022. Androgen receptor-mediated paracrine signaling induces regression of blood vessels in the dermal papilla in androgenetic alopecia. J. Invest. Dermatol. 142: 2088-2099.e2089.  https://doi.org/10.1016/j.jid.2022.01.003
  95. Kwack MH, Sung YK, Chung EJ, Im SU, Ahn JS, Kim MK, et al. 2008. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Investig. Dermatol. 128: 262-269.  https://doi.org/10.1038/sj.jid.5700999
  96. Kwack MH, Ahn JS, Kim MK, Kim JC, Sung YK. 2012. Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. J. Invest. Dermatol. 132: 43-49.  https://doi.org/10.1038/jid.2011.274
  97. Ruksiriwanich W, Khantham C, Muangsanguan A, Phimolsiripol Y, Barba FJ, Sringarm K, et al. 2022. Guava (Psidium guajava L.) leaf extract as bioactive substances for anti-androgen and antioxidant activities. Plants (Basel, Switzerland) 11: 3514. 
  98. Shin JY, Choi YH, Kim J, Park SY, Nam YJ, Lee SY, et al. 2020. Polygonum multiflorum extract support hair growth by elongating anagen phase and abrogating the effect of androgen in cultured human dermal papilla cells. BMC Complement. Med. Ther. 20: 144. 
  99. Choi YH, Shin JY, Kim J, Kang NG, Lee S. 2021. Niacinamide down-regulates the expression of DKK-1 and protects cells from oxidative stress in cultured human dermal papilla cells. Clin. Cosmet. Investig. Dermatol. 14: 1519-1528.  https://doi.org/10.2147/CCID.S334145
  100. Yang F, Cao Y. 2012. Biosynthesis of phloroglucinol compounds in microorganisms--review. Appl. Microbiol. Biotechnol. 93: 487-495.  https://doi.org/10.1007/s00253-011-3712-6
  101. Zhou L, Xu M, Yang Y, Yang K, Wickett RR, Andl T, et al. 2016. Activation of β-catenin signaling in CD133-positive dermal papilla cells drives postnatal hair growth. PLoS One 11: e0160425. 
  102. Zhao S, Fu J, Liu X, Wang T, Zhang J, Zhao Y. 2012. Activation of Akt/GSK-3beta/beta-catenin signaling pathway is involved in survival of neurons after traumatic brain injury in rats. Neurol. Res. 34: 400-407.  https://doi.org/10.1179/1743132812Y.0000000025
  103. Tang Z, Yang G, Wang X, Chen F, Liao Z, Zhang Z, et al. 2020. AKT/GSK-3β/β-catenin signaling pathway participates in erythropoietin-promoted glioma proliferation. J. Neurooncol. 149: 231-242.  https://doi.org/10.1007/s11060-020-03602-9
  104. Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, et al. 2001. Akt participation in the Wnt signaling pathway through Dishevelled. J. Biol. Chem. 276: 17479-17483.  https://doi.org/10.1074/jbc.C000880200
  105. Prie BE, Voiculescu VM, Ionescu-Bozdog OB, Petrutescu B, Iosif L, Gaman LE, et al. 2015. Oxidative stress and alopecia areata. J. Med. Life 8 Spec Issue: 43-46. 
  106. Prie BE, Iosif L, Tivig I, Stoian I, Giurcaneanu C. 2016. Oxidative stress in androgenetic alopecia. J. Med. Life 9: 79-83. 
  107. Upton JH, Hannen RF, Bahta AW, Farjo N, Farjo B, Philpott MP. 2015. Oxidative stress-associated senescence in dermal papilla cells of men with androgenetic alopecia. J. Invest. Dermatol. 135: 1244-1252.  https://doi.org/10.1038/jid.2015.28
  108. Gaff AN A-, S H, SAW. 2005. Effect of melatonin on oxidative stress markers in patients with alopecia areata. Iraq. J. Pharm. 5: 33-39.  https://doi.org/10.33899/iphr.2005.50259
  109. Shakoei S, Mirmiranpoor H, Nakhjavani M, Nasimi M, Bakhshi G, Azizpour A. 2023. Oxidative stress and antioxidant markers in patients with alopecia areata: A comparative cross-sectional study. Indian J. Dermatol. Venereol. Leprol. 89: 411-415.  https://doi.org/10.25259/IJDVL_228_20
  110. Acharya P, Mathur MC. 2020. Oxidative stress in alopecia areata: a systematic review and meta-analysis. Int. J. Dermatol. 59: 434-440.  https://doi.org/10.1111/ijd.14753
  111. Haslam IS, Jadkauskaite L, Szabo IL, Staege S, Hesebeck-Brinckmann J, Jenkins G, et al. 2017. Oxidative damage control in a human (Mini-) Organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition. J. Invest. Dermatol. 137: 295-304.  https://doi.org/10.1016/j.jid.2016.08.035
  112. Park C, Cha HJ, Kim MY, Bang E, Moon SK, Yun SJ, et al. 2022. Phloroglucinol attenuates DNA damage and apoptosis induced by oxidative stress in human retinal pigment epithelium ARPE-19 cells by blocking the production of mitochondrial ROS. Antioxidants (Basel, Switzerland) 11: 2353.