DOI QR코드

DOI QR Code

Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Escherichia coli

  • Suk-Jin Oh (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Hong-Ju Lee (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Jeong Hyeon Hwang (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Hyun Jin Kim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Nara-Shin (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Sang-Ho Lee (Department of Pharmacy, College of Pharmacy, Jeju National University) ;
  • Seung-Oh Seo (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Shashi Kant Bhatia (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Yung-Hun Yang (Department of Biological Engineering, College of Engineering, Konkuk University)
  • 투고 : 2023.06.05
  • 심사 : 2023.09.05
  • 발행 : 2024.03.28

초록

Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR-overexpressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.

키워드

과제정보

This study was supported by the Research Program to Solve Social Issues with the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT [Grant No. 2017M3A9E4077234], National Research Foundation of Korea (NRF) [Grant Nos. NRF-2022M3I3A1082545, NRF-2022R1A2C2003138]. This study was also supported by the R&D Program of MOTIE/KEIT [Grant Nos. 20009508 and 20014350]. The authors also acknowledge the KU Research Professor Program of Konkuk University, Seoul, South Korea.

참고문헌

  1. Acharjee SA, Bharali P, Gogoi B, Sorhie V, Walling B, Alemtoshi. 2023. PHA-based bioplastic: a potential alternative to address microplastic pollution. Water Air Soil Pollut. 234: 21.
  2. Roohi, Zaheer MR, Kuddus M. 2018. PHB (poly-β-hydroxybutyrate) and its enzymatic degradation. Polym. Adv. Technol. 29: 30-40.
  3. Asgher M, Qamar SA, Bilal M, Iqbal HMN. 2020. Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 137: 109625.
  4. Govil T, Wang J, Samanta D, David A, Tripathi A, Rauniyar S, et al. 2020. Lignocellulosic feedstock: a review of a sustainable platform for cleaner production of nature's plastics. J. Clean Prod. 270: 122521.
  5. Al-Battashi HS, Annamalai N, Sivakumar N, Al-Bahry S, Tripathi BN, Nguyen QD, et al. 2019. Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev. Environ. Sci. Biotechnol. 18: 183-205.
  6. Obruca S, Benesova P, Marsalek L, Marova I. 2015. Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q 29: 135-144.
  7. Lopes MSG, Gosset G, Rocha RCS, Gomez JGC, Ferreira Da Silva L. 2011. PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari. Curr. Microbiol. 63: 319-326.
  8. Kim SM, Choi BY, Ryu YS, Jung SH, Park JM, Kim GH, et al. 2015. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab. Eng. 30: 141-148.
  9. Yuan X, Tu S, Lin J, Yang L, Shen H, Wu M. 2020. Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates. Appl. Microbiol. Biotechnol. 104: 2039-2050.
  10. Gorke B, Stulke J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol 6: 613-624.
  11. Banares AB, Nisola GM, Valdehuesa KNG, Lee WK, Chung WJ. 2021. Engineering of xylose metabolism in Escherichia coli for the production of valuable compounds. Crit. Rev. Biotechnol 41: 649-668.
  12. Groff D, Benke PI, Batth TS, Bokinsky G, Petzold CJ, Adams PD, et al. 2012. Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Appl. Environ. Microbiol. 78: 2221-2229.
  13. Guaman LP, Barba-Ostria C, Zhang F, Oliveira-Filho ER, Gomez JGC, Silva LF. 2018. Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari. Microb. Cell Fact. 17: 74.
  14. Sievert C, Nieves LM, Panyon LA, Loeffler T, Morris C, Cartwright RA, et al. 2017. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc. Natl. Acad. Sci. USA 114: 7349-7354.
  15. Barthe M, Tchouanti J, Gomes PH, Bideaux C, Lestrade D, Graham C, et al. 2020. Availability of the molecular switch XylR controls phenotypic heterogeneity and lag duration during Escherichia coli adaptation from glucose to xylose. mBio 11: e02938-20.
  16. Lee HJ, Kim B, Kim S, Cho DH, Jung H, Bhatia SK, et al. 2022. Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator. J. Biotechnol. 359: 21-28.
  17. Martinez R, Flores AD, Dufault ME, Wang X. 2019. The XylR variant (R121C and P363S) releases arabinose-induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures. Biotechnol. Bioeng. 116: 3476-3481.
  18. Bhatia SK, Shim YH, Jeon JM, Brigham CJ, Kim YH, Kim HJ, et al. 2015. Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Bioyst. Eng. 38: 1479-1484.
  19. Song HS, Jeon JM, Bhatia SK, Choi TR, Lee SM, Park SL, et al. 2020. Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering. J. Biotechnol. 320: 66-73.
  20. Jung HR, Choi TR, Han YH, Park YL, Park JY, Song HS, et al. 2020. Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dyes Pigm. 173. 107889.
  21. Hong YG, Moon YM, Hong JW, Choi TR, Jung HR, Yang SY, et al. 2019. Discarded egg yolk as an alternate source of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J. Microbiol. Biotechnol. 29: 382-391.
  22. Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, et al. 2022. Finding of novel galactose utilizing Halomonas sp. YK44 for Polyhydroxybutyrate (PHB) production. Polymers (Basel) 14: 5407.
  23. Lee HJ, Jung HJ, Kim B, Cho DH, Kim SH, Bhatia SK, et al. 2022. Enhancement of polyhydroxybutyrate production by introduction of heterologous phasin combination in Escherichia coli. Int. J. Biol. Macromol. 225: 757-766.
  24. Jonsson LJ, Martin C. 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199: 103-112.
  25. Behera S, Arora R, Nandhagopal N, Kumar S. 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energ. Rev. 36: 91-106.
  26. Lee JW, Houtman CJ, Kim HY, Choi IG, Jeffries TW. 2011. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresour. Technol. 102: 7451-7456.
  27. Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, et al. 2014. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol. 14: 22.
  28. Dumon-Seignovert L, Cariot G, Vuillard L. 2004. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr. Purif. 37: 203-206.
  29. Jung HR, Yang SY, Moon YM, Choi TR, Song HS, Bhatia SK, et al. 2019. Construction of efficient platform Escherichia coli strains for polyhydroxyalkanoate production by engineering branched pathway. Polymers (Basel) 11: 509.
  30. Khushoo A, Pal Y, Singh BN, Mukherjee KJ. 2004. Extracellular expression and single step purification of recombinant Escherichia coli l-asparaginase II. Protein Expr. Purif. 38: 29-36.
  31. Yang YH, Brigham CJ, Song E, Jeon JM, Rha CK, Sinskey AJ. 2012. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. J. Appl. Microbiol 113: 815-823.
  32. Lee HS, Lee HJ, Kim SH, Cho JY, Suh MJ, Ham S, et al. 2021. Novel phasins from the Arctic Pseudomonas sp. B14-6 enhance the production of polyhydroxybutyrate and increase inhibitor tolerance. Int. J. Biol. Macromol. 190: 722-729.
  33. Huo G, Zhu Y, Liu Q, Tao R, Diao N, Wang Z, et al. 2017. Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose-xylose feedstock. J. Chem. Technol. Biotechnol. 92: 2739-2745.
  34. Shi LL, Zheng Y, Tan BW, Li ZJ. 2022. Establishment of a carbon-efficient xylulose cleavage pathway in Escherichia coli to metabolize xylose. Biochem Eng. J. 179. 108331.
  35. Kim HS, Oh YH, Jang YA, Kang KH, David Y, Yu JH, et al. 2016. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb. Cell Fact. 15: 95.
  36. Lee SM, Lee HJ, Kim SH, Suh MJ, Cho JY, Ham S, et al. 2021. Screening of the strictly xylose-utilizing Bacillus sp. SM01 for polyhydroxybutyrate and its co-culture with Cupriavidus necator NCIMB 11599 for enhanced production of PHB. Int. J. Biol. Macromol. 181: 410-417.
  37. Guaman LP, Oliveira-Filho ER, Barba-Ostria C, Gomez JGC, Taciro MK, da Silva LF. 2018. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari. J. Ind. Microbiol. Biotechnol. 45: 165-173.
  38. Oliveira-Filho ER, de Macedo MA, Lemos ACC, Adams F, Merkel OM, Taciro MK, et al. 2022. Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate. Int. J. Biol. Macromol. 213: 902-914.
  39. Tan B, Zheng Y, Yan H, Liu Y, Li ZJ. 2022. Metabolic engineering of Halomonas bluephagenesis to metabolize xylose for poly-3-hydroxybutyrate production. Biochem. Eng. J. 187. 108623.