DOI QR코드

DOI QR Code

Allosteric Probe-Based Colorimetric Assay for Direct Identification and Sensitive Analysis of Methicillin Resistance of Staphylococcus aureus

  • Juan Chu (Department of Dermatology, Zhuji Affiliated Hospital of Shaoxing University) ;
  • Xiaoqin Zhao (Department of Dermatology, Zhuji Affiliated Hospital of Shaoxing University)
  • 투고 : 2023.12.28
  • 심사 : 2024.02.02
  • 발행 : 2024.03.28

초록

The accurate and rapid detection of methicillin-resistance of Staphylococcus aureus (SA) holds significant clinical importance. However, the methicillin-resistance detection strategies commonly require complicated cell lysis and gene extraction. Herein, we devised a novel colorimetric approach for the sensitive and accurate identification of methicillin-resistance of SA by combining allosteric probe-based target recognition with self-primer elongation-based target recycling. The PBP2a aptamer in the allosteric probe successfully identified the target MRSA, leading to the initiation of self-primer elongation based-cascade signal amplification. The peroxidase-like hemin/G-quadruplex undergo an isothermal autonomous process that effectively catalyzes the oxidation of ABTS2- and produces a distinct blue color, enabling the visual identification of MRSA at low concentrations. The method offers a shorter duration for bacteria cultivation compared to traditional susceptibility testing methods, as well as simplified manual procedures for gene analysis. The overall amplification time for this test is 60 min, and it has a detection limit of 3 CFU/ml. In addition, the approach has exceptional selectivity and reproducibility, demonstrating commendable performance when tested with real samples. Due to its advantages, this colorimetric assay exhibits considerable potential for integration into a sensor kit, thereby offering a viable and convenient alternative for the prompt and on-site detection of MRSA in patients with skin and soft tissue infections.

키워드

참고문헌

  1. Chen JL, Huang TY, Hsu WB, Lee CW, Chiang YC, Chang PJ, et al. 2022. Characterization of methicillin-resistant Staphylococcus aureus isolates from periprosthetic joint infections. Pathogens 11: 719.
  2. Hays MR, Kildow BJ, Hartman CW, Lyden ER, Springer BD, Fehring TK, et al. 2023. Increased incidence of methicillin-resistant Staphylococcus aureus in knee and hip prosthetic joint infection. J. Arthroplasty 38: S326-S330.
  3. Gill AAS, Singh S, Thapliyal N, Karpoormath R. 2019. Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Mikrochim. Acta 186: 114.
  4. Sturenburg E. 2009. Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations. Ger. Med. Sci. 7: Doc06.
  5. Hirvonen JJ. 2014. The use of molecular methods for the detection and identification of methicillin-resistant Staphylococcus aureus. Biomark. Med. 8: 1115-1125.
  6. Liu Y, Liu H, Yu G, Sun W, Aizaz M, Yang G, et al. 2023. One-tube RPA-CRISPR Cas12a/Cas13a rapid detection of methicillinresistant Staphylococcus aureus. Anal. Chim. Acta 1278: 341757.
  7. Luo J, Li J, Yang H, Yu J, Wei H. 2017. Accurate detection of methicillin-resistant Staphylococcus aureus in mixtures by use of singlebacterium duplex droplet digital PCR. J. Clin. Microbiol. 55: 2946-2955.
  8. Turek D, Van Simaeys D, Johnson J, Ocsoy I, Tan W. 2013. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers. World J. Transl. Med. 2: 67-74.
  9. Lai HZ, Wang SG, Wu CY, Chen YC. 2015. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 87: 2114-2120.
  10. Wei L, Wang Z, Wang J, Wang X, Chen Y. 2022. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification. Anal. Chim. Acta 1230: 340357.
  11. Zhang H, Ma L, Ma L, Hua MZ, Wang S, Lu X. 2017. Rapid detection of methicillin-resistant Staphylococcus aureus in pork using a nucleic acid-based lateral flow immunoassay. Int. J. Food Microbiol. 243: 64-69.
  12. Ocsoy I, Yusufbeyoglu S, Yilmaz V, McLamore ES, Ildiz N, Ulgen A. 2017. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-resistant Staphylococcus aureus. Colloids Surf. B Biointerfaces 159: 16-22.
  13. Chan WS, Tang BS, Boost MV, Chow C, Leung PH. 2014. Detection of methicillin-resistant Staphylococcus aureus using a gold nanoparticle-based colourimetric polymerase chain reaction assay. Biosens. Bioelectron. 53: 105-111.
  14. Chang T, Wang L, Zhao K, Ge Y, He M, Li G. 2016. Duplex Identification of Staphylococcus aureus by aptamer and gold nanoparticles. J. Nanosci. Nanotechnol. 16: 5513-5519.
  15. Xu L, Dai Q, Shi Z, Liu X, Gao L, Wang Z, et al. 2020. Accurate MRSA identification through dual-functional aptamer and CRISPRCas12a assisted rolling circle amplification. J. Microbiol. Methods 173: 105917.