Acknowledgement
This research was supported by the Ministry of Education Youth and Sports (the program InterExcellence-InterAction, grant no. LTAUSA-19003), the Ministry of Defence of the Czech Republic (long-term organization development plan) and by the Ministry of Health (MH-CZ DRO (UHHK, 00179906). The authors thank Ing. Jan Bartacek, Ph.D. for the FTIR analysis, and doc. Ing. Libor Cervenka, Ph.D. and doc. Ing. Libor Cervenka, Ph.D. for lyophilisation. The authors are grateful to Ian McColl MD. Ph.D for language assistance with the manuscript. The authors are grateful to Ian McColl MD PhD for language assistance with the manuscript.
References
- Yang Y, Ronge X, Song L, Yukun Q, Kecheng L, Huahua Y, et al. 2020. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated newcastle disease vaccine. Carbohydr. Polym. 229: 115423.
- Carroll EC, Jin L, Mori A, Munoz-Wolf N, Oleszycka E, Moran HBT, et al. 2016. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44: 597-608. https://doi.org/10.1016/j.immuni.2016.02.004
- El-Sissi AF, Farida HM, Nadia MD, Ali QG, Korany AA. 2020. Chitosan and chitosan nanoparticles as adjuvant in local rift valley fever inactivated vaccine. 3 Biotech. 10: 88.
- Biswas, S, Chattopadhyay M, Sen KK, Saha, MK. 2015. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr. Polym. 121: 403-410. https://doi.org/10.1016/j.carbpol.2014.12.044
- Bachmann MF, Jennings GT. 2010. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10: 787-796. https://doi.org/10.1038/nri2868
- Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. 2008. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38: 1404-1413. https://doi.org/10.1002/eji.200737984
- Bootz A, Karbach A, Spindler J, Kropff B, Reuter N, Sticht H, et al. 2017. Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. PLoS Pathog. 13: e1006601.
- Wang H, Huang C, Dong J, Yao Y, Xie Z, Liu X, et al. 2015. Complete protection of mice against lethal murine cytomegalovirus challenge by immunization with DNA vaccines encoding envelope glycoprotein complex III antigens GH, GL and GO. PLoS One 10: e0119964.
- Li L, Freed DC, Liu Y, Li F, Barrett DF, Xiong W, et al. 2021. A Conditionally replication-defective cytomegalovirus vaccine elicits potent and diverse functional monoclonal antibodies in a phase I clinical trial. Npj Vaccines 6: 79.
- Bialas KM, Tanaka T, Tran D, Varner V, Cisneros De La Rosa E, Chiuppesi F, et al. 2015. Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. Proc. Natl. Acad. Sci. USA 112: 13645-13650. https://doi.org/10.1073/pnas.1511526112
- Bongard N, Le-Trilling VTK, Malyshkina A, Ruckborn M, Wohlgemuth K, Wensing I, et al. 2019. Immunization with a murine cytomegalovirus based vector encoding retrovirus envelope confers strong protection from friend retrovirus challenge infection. PLoS Pathog. 15: e1008043.
- Almalik A, Donno R, Cadman CJ, Cellesi F, Day PJ, Tirelli N. 2013. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation. J. Control. Release 172: 1142-1150. https://doi.org/10.1016/j.jconrel.2013.09.032
- Jesus S, Borchard G, Borges O. 2013. Freeze dried chitosan/ poly-ε-caprolactone and poly-ε-caprolactone nanoparticles: evaluation of their potential as DNA and antigen delivery systems. J. Genet. Syndr. Gene Ther. 4: 7.
- Bento D, Jesus S, Lebre F, Goncalves T, Borges O. 2019. Chitosan plus compound 48/80: formulation and preliminary evaluation as a hepatitis B vaccine adjuvant. Pharmaceutics 11: 72.
- Kilkenny C, Browne WJ, Cuthi I, Emerson M, Altman DG. 2012. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet. Clin. Pathol. 41: 27-31. https://doi.org/10.1111/j.1939-165X.2012.00418.x
- Mauricio-Sanchez RA, Salazar R, Luna-Barcenas JG, Mendoza-Galvan A. 2018. FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning. Vib. Spectrosc. 94: 1-6. https://doi.org/10.1016/j.vibspec.2017.10.005
- Slovakova M, Kratochvilova V, Palarcik J, Metelka R, Dvorakova P, Srbova J, et al. 2016. Chitosan nanofibers and nanoparticles for immobilization of microbial collagenase. Fibers Textile 23: 193-198.
- de la Calle I, Soto-Gomez D, Perez-Rodriguez P, Lopez-Periago JE, 2019. Particle size characterization of sepia ink eumelanin biopolymers by SEM, DLS, and AF4-MALLS: a comparative study. Food Anal. Methods 12: 1140-1151. https://doi.org/10.1007/s12161-019-01448-0
- Correia-Pinto J, Csaba N, Schiller J, Alonso M. 2015. Chitosan-poly (I:C)-PADRE based nanoparticles as delivery vehicles for synthetic peptide vaccines. Vaccines 3: 730-750. https://doi.org/10.3390/vaccines3030730
- Li Z, Li Y, Wang Y, Hou Y, Cao H, Wu X, et al. 2021. Intranasal immunization with a RNMB0315 and combination adjuvants induces protective immunity against Neisseria meningitidis serogroup B in mice. Int. Immunopharmacol. 93: 107411.
- Borges O, Cordeiro-da-Silva A, Tavares J, Santarem N, de Sousa A, Borchard G, et al. 2008. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm. 69: 405-416. https://doi.org/10.1016/j.ejpb.2008.01.019
- Wen ZS, Xu YL, Zou XT, Xu ZR. 2011. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar. Drugs 9: 1038-1055. https://doi.org/10.3390/md9061038
- Li X, Xing R, Xu C, Liu S, Qin Y, Li K, et al. 2021. Immunostimulatory effect of chitosan and quaternary chitosan: a review of potential vaccine adjuvants. Carbohydr. Polym. 264: 118050.
- Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A. 2013. Chitosan nanoparticles: preparation, size evolution and stability. Int. J. Pharm. 455: 219-228. https://doi.org/10.1016/j.ijpharm.2013.07.034
- Dong C, Wang Y, Gonzalez GX, Ma Y, Song Y, Wang S, et al. 2021. Intranasal vaccination with influenza HA/GO-PEI nanoparticles provides immune protection against homo- and heterologous strains. Proc. Natl. Acad. Sci. USA 118: e2024998118.
- Nasti A, Zaki NM, de Leonardis P, Ungphaiboon S, Sansongsak P, Rimoli MG, et al. 2009. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm. Res. 26: 1918-1930. https://doi.org/10.1007/s11095-009-9908-0
- Wang Y, Li P, Kong L. 2013. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech. 14: 585-592. https://doi.org/10.1208/s12249-013-9943-3
- da Silva Furtado GTF, Fideles TB, de Cassia Alves Leal Cruz R, de Lima Souza JW, Barbero MAR, Fook MVL. 2020. Chitosan/NaF particles prepared via ionotropic gelation: evaluation of particles size and morphology. Mat. Res. 21. doi.org/10.1590/1980-5373-MR-2018-0101 .
- Azevedo JR, Sizilio RH, Brito MB, Costa AMB, Serafini MR, Araujo AAS, et al. 2011. Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J. Therm. Anal. Calorim. 106: 685-689. https://doi.org/10.1007/s10973-011-1429-5
- Jin Z, Gao S, Cui X, Sun D, Zhao K. 2019. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int. J. Pharm. 572: 118731.
- Foster S, Duvall CL, Crownover EF, Hoffman AS, Stayton PS. 2010. Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconjug. Chem. 21: 2205-2212. https://doi.org/10.1021/bc100204m
- Farace C, Sanchez-Moreno P, Orecchioni M, Manetti R, Sgarrella F, Asara Y, et al. 2016. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol. Sci. Rep. 6: 18423.
- Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. 2007. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur. J. Pharm. Sci. 32: 278-290. https://doi.org/10.1016/j.ejps.2007.08.005