DOI QR코드

DOI QR Code

Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation

  • Sehyeon Jang (School of Food Science and Biotechnology, Kyungpook National University) ;
  • San Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Se Jeong Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Jun Young Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Da Hye Gu (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Bo Ram So (COSMAX NBT, INC.) ;
  • Jung A Ryu (Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services) ;
  • Jeong Min Park (Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services) ;
  • Sung Ran Yoon (Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services) ;
  • Sung Keun Jung (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2023.09.19
  • Accepted : 2023.11.21
  • Published : 2024.03.28

Abstract

Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.

Keywords

Acknowledgement

This work was carried out with the support of "Development of K-Immunity Agricultural Food Technology Using Gyeongbuk Ingredients (Project No. LP0048882022)" Gyeongsangbuk-do Agricultural Research & Extension services and National Research Foundation of Korea Grant, funded by the Korean government (MEST) (NRF-2022R1A2C1010923).

References

  1. Galanakis CM, Aldawoud TMS, Rizou M, Rowan NJ, Ibrahim SA. 2020. Food ingredients and active compounds against the Coronavirus Disease (COVID-19) Pandemic: a comprehensive review. Foods 9: 1701.
  2. Finnegan D, Tocmo R, Loscher C. 2023. Targeted application of functional foods as immune fitness boosters in the defense against viral infection. Nutrients 15: 3371.
  3. Kolter J, Henneke P, Gross O, Kierdorf K, Prinz M, Graf L, et al. 2022. Paradoxical immunodeficiencies-When failures of innate immunity cause immunopathology. Eur. J. Immunol. 52: 1419-1430. https://doi.org/10.1002/eji.202149531
  4. Marshall JS, Warrington R, Watson W, Kim HL. 2018. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14: 49.
  5. Atri C, Guerfali FZ, Laouini D. 2018. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 19: 1801.
  6. Herb M, Schramm M. 2021. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel) 10: 313.
  7. Satoh T, Akira S. 2016. Toll-like receptor signaling and its inducible proteins. Microbiol. Spectr. 4. doi: 10.1128/microbiolspec.MCHD-0040-2016.
  8. Jia J, Liu Y, Zhang X, Liu X, Qi J. 2013. Regulation of iNOS expression by NF-κB in human lens epithelial cells treated with high levels of glucose. Invest. Ophthalmol. Vis. Sci. 54: 5070-5077. https://doi.org/10.1167/iovs.13-11796
  9. Uehara EU, Shida Bde S, de Brito CA. 2015. Role of nitric oxide in immune responses against viruses: beyond microbicidal activity. Inflamm. Res. 64: 845-852. https://doi.org/10.1007/s00011-015-0857-2
  10. Sun SC. 2011. Non-canonical NF-κB signaling pathway. Cell Res. 21: 71-85. https://doi.org/10.1038/cr.2010.177
  11. Rungkat FZ, Nurahman, Prangdimurt E, Tejasari. 2003. Antioxidant and immunoenhancement activities of ginger (Zingiber officinale Roscoe) extracts and compounds in in vitro and in vivo mouse and human system. Prev. Nutr. Food Sci. 8: 96-104. https://doi.org/10.3746/jfn.2003.8.1.096
  12. Kim SJ, Baek SH, Kang KS, Shin MS. 2023. Characterization of macrophage activation after treatment with polysaccharides from ginseng according to heat processing. Appl. Biol. Chem. 66: 15.
  13. Kim KJ, Hwang ES, Kim MJ, Park JH, Kim DO. 2020. Antihypertensive effects of polyphenolic extract from Korean red pine (Pinus densiflora Sieb. et Zucc.) bark in spontaneously hypertensive rats. Antioxidants (Basel) 9: 333.
  14. Shibuya T, Funamizu M, Kitahara Y. 1978. Abscisic acid from Pinus densiflora pollen. Phytochemistry 17: 322-323. https://doi.org/10.1016/S0031-9422(00)94179-7
  15. Shibuya T, Funamizu M, Kitahara Y. 1978. Novel p-coumaric acid esters from Pinus densiflora pollen. Phytochemistry 17: 979-981. https://doi.org/10.1016/S0031-9422(00)88660-4
  16. Mogami N, Nakamura S, Nakamura N. 1999. Immunolocalization of the cell wall components in Pinus densiflora pollen. Protoplasma 206: 1-10. https://doi.org/10.1007/BF01279247
  17. Choi EM. 2007. Antinociceptive and antiinflammatory activities of pine (Pinus densiflora) pollen extract. Phytother. Res. 21: 471-475. https://doi.org/10.1002/ptr.2103
  18. Sha Z, Shang H, Miao Y, Huang J, Niu X, Chen R, et al. 2021. Polysaccharides from Pinus massoniana pollen improve intestinal mucosal immunity in chickens. Poult. Sci. 100: 507-516. https://doi.org/10.1016/j.psj.2020.09.015
  19. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, pp. 152-178. Methods in enzymology, Ed. Elsevier.
  20. Youn SJ, Rhee JK, Yoo SH, Chung MS, Lee H. 2016. Total phenolics contents, total flavonoids contents and antioxidant capacities of commercially available Korean domestic and foreign intermediate food materials. Microbiol. Biotechnol. Lett. 44: 278-284 https://doi.org/10.4014/mbl.1606.06003
  21. Kim MJ, Kim JG, Sydara KM, Lee SW, Jung SK. 2020. Croton hirtus L'Her extract prevents inflammation in RAW264.7 macrophages via inhibition of NF-κB signaling pathway. J. Microbiol. Biotechnol. 30: 490-496. https://doi.org/10.4014/jmb.1908.08045
  22. Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916. https://doi.org/10.1038/ni1001-907
  23. Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, Calderon-Aranda ES. 2011. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by lipopolysaccharide. Cell Signal. 23: 425-435. https://doi.org/10.1016/j.cellsig.2010.10.017
  24. Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, et al. 2022. COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl. Trop. Dis. 16: e0010402.
  25. Ding S, Jiang H, Fang J. 2018. Regulation of immune function by polyphenols. J. Immunol. Res. 2018: 1264074.
  26. Tavassolifar MJ, Vodjgani M, Salehi Z, Izad M. 2020. The influence of reactive oxygen species in the immune system and pathogenesis of multiple sclerosis. Autoimmune Dis. 2020: 5793817.
  27. Pinegin B, Vorobjeva N, Pashenkov M, Chernyak B. 2018. The role of mitochondrial ROS in antibacterial immunity. J. Cell. Physiol. 233: 3745-3754. https://doi.org/10.1002/jcp.26117
  28. Schooltink H, Rose-John S. 2002. Cytokines as therapeutic drugs. J. Interferon Cytokine Res. 22: 505-516. https://doi.org/10.1089/10799900252981981
  29. Belardelli F, Ferrantini M. 2002. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 23: 201-208. https://doi.org/10.1016/S1471-4906(02)02195-6
  30. Pradere JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. 2016. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci. Signal. 9: ra85.
  31. Alkhatib A. 2020. Antiviral functional foods and exercise lifestyle prevention of coronavirus. Nutrients 12: 2633.
  32. Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, et al. 2022. Immunomodulatory functional foods and their molecular mechanisms. Exp. Mol. Med. 54: 1-11. https://doi.org/10.1038/s12276-022-00724-0
  33. Basak S, Gokhale J. 2022. Immunity boosting nutraceuticals: current trends and challenges. J. Food Biochem. 46: e13902.
  34. Go MJ, Kim JM, Kang JY, Park SK, Lee CJ, Kim MJ, et al. 2022. Korean red pine (Pinus densiflora) bark extract attenuates Aβ-induced cognitive impairment by regulating cholinergic dysfunction and neuroinflammation. J. Microbiol. Biotechnol. 32: 1154-1167. https://doi.org/10.4014/jmb.2207.07015
  35. Park JH, Kim JD, Lee TK, Han X, Sim H, Kim B, et al. 2021. Neuroprotective and anti-inflammatory effects of Pinus densiflora bark extract in gerbil hippocampus following transient forebrain ischemia. Molecules 26: 4592.
  36. Lee SJ, Lee KW, Hur HJ, Chun JY, Kim SY, Lee HJ. 2007. Phenolic phytochemicals derived from red pine (Pinus densiflora) inhibit the invasion and migration of SK-Hep-1 human hepatocellular carcinoma cells. Ann. N Y Acad. Sci. 1095: 536-544. https://doi.org/10.1196/annals.1397.058
  37. Jo JR, Park JS, Park YK, Chae YZ, Lee GH, Park GY, et al. 2012. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Int. J. Oncol. 40: 1238-1245. https://doi.org/10.3892/ijo.2011.1263
  38. Shekhova E. 2020. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog. 16: e1008470.
  39. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476-480. https://doi.org/10.1038/nature09973
  40. Fernandez-Boyanapalli RF, Frasch SC, Thomas SM, Malcolm KC, Nicks M, Harbeck RJ, et al. 2015. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease. J. Allergy Clin. Immunol. 135: 517-527.e512. https://doi.org/10.1016/j.jaci.2014.10.034
  41. Reyes-Becerril M, Angulo C, Cosio-Aviles L, Lopez MG, Calvo-Gomez O. 2022. Cylindropuntia cholla aqueous root rich in phytosterols enhanced immune response and antimicrobial activity in tilapia Oreochromis niloticus leukocytes. Fish Shellfish Immunol. 131: 408-418. https://doi.org/10.1016/j.fsi.2022.10.028
  42. Lu CC, Chen JK. 2010. Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways. J. Cell. Physiol. 223: 343-351. https://doi.org/10.1002/jcp.22043
  43. Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al. 2017. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS One 12: e0186546.
  44. Tumova L, Ducaiova Z, Cheel J, Vokral I, Sepulveda B, Vokurkova D. 2017. Azorella compacta infusion activates human immune cells and scavenges free radicals in vitro. Pharmacogn. Mag. 13: 260-264. https://doi.org/10.4103/0973-1296.204558
  45. Gou X, Xu W, Liu Y, Peng Y, Xu W, Yin Y, et al. 2022. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting GSDME- and GSDMD-mediated Pyroptosis during Pneumococcal Pneumosepsis. Microbiol Spectr. 10: e0204921.
  46. Schmit T, Ghosh S, Mathur RK, Barnhardt T, Ambigapathy G, Wu M, et al. 2020. IL-6 deficiency exacerbates allergic asthma and abrogates the protective effect of allergic inflammation against Streptococcus pneumoniae pathogenesis. J. Immunol. 205: 469-479. https://doi.org/10.4049/jimmunol.1900755
  47. Wada H, Saito K, Kanda T, Kobayashi I, Fujii H, Fujigaki S, et al. 2001. Tumor necrosis factor-alpha (TNF-alpha) plays a protective role in acute viralmyocarditis in mice: a study using mice lacking TNF-alpha. Circulation 103: 743-749. https://doi.org/10.1161/01.CIR.103.5.743
  48. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, et al. 2007. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179: 1178-1189. https://doi.org/10.4049/jimmunol.179.2.1178
  49. van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 32: 110-116. https://doi.org/10.1016/j.it.2011.01.003
  50. Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr. Polym. 121: 388-402. https://doi.org/10.1016/j.carbpol.2014.12.023