Acknowledgement
This work was carried out with the support of "Development of K-Immunity Agricultural Food Technology Using Gyeongbuk Ingredients (Project No. LP0048882022)" Gyeongsangbuk-do Agricultural Research & Extension services and National Research Foundation of Korea Grant, funded by the Korean government (MEST) (NRF-2022R1A2C1010923).
References
- Galanakis CM, Aldawoud TMS, Rizou M, Rowan NJ, Ibrahim SA. 2020. Food ingredients and active compounds against the Coronavirus Disease (COVID-19) Pandemic: a comprehensive review. Foods 9: 1701.
- Finnegan D, Tocmo R, Loscher C. 2023. Targeted application of functional foods as immune fitness boosters in the defense against viral infection. Nutrients 15: 3371.
- Kolter J, Henneke P, Gross O, Kierdorf K, Prinz M, Graf L, et al. 2022. Paradoxical immunodeficiencies-When failures of innate immunity cause immunopathology. Eur. J. Immunol. 52: 1419-1430. https://doi.org/10.1002/eji.202149531
- Marshall JS, Warrington R, Watson W, Kim HL. 2018. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14: 49.
- Atri C, Guerfali FZ, Laouini D. 2018. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 19: 1801.
- Herb M, Schramm M. 2021. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel) 10: 313.
- Satoh T, Akira S. 2016. Toll-like receptor signaling and its inducible proteins. Microbiol. Spectr. 4. doi: 10.1128/microbiolspec.MCHD-0040-2016.
- Jia J, Liu Y, Zhang X, Liu X, Qi J. 2013. Regulation of iNOS expression by NF-κB in human lens epithelial cells treated with high levels of glucose. Invest. Ophthalmol. Vis. Sci. 54: 5070-5077. https://doi.org/10.1167/iovs.13-11796
- Uehara EU, Shida Bde S, de Brito CA. 2015. Role of nitric oxide in immune responses against viruses: beyond microbicidal activity. Inflamm. Res. 64: 845-852. https://doi.org/10.1007/s00011-015-0857-2
- Sun SC. 2011. Non-canonical NF-κB signaling pathway. Cell Res. 21: 71-85. https://doi.org/10.1038/cr.2010.177
- Rungkat FZ, Nurahman, Prangdimurt E, Tejasari. 2003. Antioxidant and immunoenhancement activities of ginger (Zingiber officinale Roscoe) extracts and compounds in in vitro and in vivo mouse and human system. Prev. Nutr. Food Sci. 8: 96-104. https://doi.org/10.3746/jfn.2003.8.1.096
- Kim SJ, Baek SH, Kang KS, Shin MS. 2023. Characterization of macrophage activation after treatment with polysaccharides from ginseng according to heat processing. Appl. Biol. Chem. 66: 15.
- Kim KJ, Hwang ES, Kim MJ, Park JH, Kim DO. 2020. Antihypertensive effects of polyphenolic extract from Korean red pine (Pinus densiflora Sieb. et Zucc.) bark in spontaneously hypertensive rats. Antioxidants (Basel) 9: 333.
- Shibuya T, Funamizu M, Kitahara Y. 1978. Abscisic acid from Pinus densiflora pollen. Phytochemistry 17: 322-323. https://doi.org/10.1016/S0031-9422(00)94179-7
- Shibuya T, Funamizu M, Kitahara Y. 1978. Novel p-coumaric acid esters from Pinus densiflora pollen. Phytochemistry 17: 979-981. https://doi.org/10.1016/S0031-9422(00)88660-4
- Mogami N, Nakamura S, Nakamura N. 1999. Immunolocalization of the cell wall components in Pinus densiflora pollen. Protoplasma 206: 1-10. https://doi.org/10.1007/BF01279247
- Choi EM. 2007. Antinociceptive and antiinflammatory activities of pine (Pinus densiflora) pollen extract. Phytother. Res. 21: 471-475. https://doi.org/10.1002/ptr.2103
- Sha Z, Shang H, Miao Y, Huang J, Niu X, Chen R, et al. 2021. Polysaccharides from Pinus massoniana pollen improve intestinal mucosal immunity in chickens. Poult. Sci. 100: 507-516. https://doi.org/10.1016/j.psj.2020.09.015
- Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, pp. 152-178. Methods in enzymology, Ed. Elsevier.
- Youn SJ, Rhee JK, Yoo SH, Chung MS, Lee H. 2016. Total phenolics contents, total flavonoids contents and antioxidant capacities of commercially available Korean domestic and foreign intermediate food materials. Microbiol. Biotechnol. Lett. 44: 278-284 https://doi.org/10.4014/mbl.1606.06003
- Kim MJ, Kim JG, Sydara KM, Lee SW, Jung SK. 2020. Croton hirtus L'Her extract prevents inflammation in RAW264.7 macrophages via inhibition of NF-κB signaling pathway. J. Microbiol. Biotechnol. 30: 490-496. https://doi.org/10.4014/jmb.1908.08045
- Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916. https://doi.org/10.1038/ni1001-907
- Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, Calderon-Aranda ES. 2011. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by lipopolysaccharide. Cell Signal. 23: 425-435. https://doi.org/10.1016/j.cellsig.2010.10.017
- Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, et al. 2022. COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl. Trop. Dis. 16: e0010402.
- Ding S, Jiang H, Fang J. 2018. Regulation of immune function by polyphenols. J. Immunol. Res. 2018: 1264074.
- Tavassolifar MJ, Vodjgani M, Salehi Z, Izad M. 2020. The influence of reactive oxygen species in the immune system and pathogenesis of multiple sclerosis. Autoimmune Dis. 2020: 5793817.
- Pinegin B, Vorobjeva N, Pashenkov M, Chernyak B. 2018. The role of mitochondrial ROS in antibacterial immunity. J. Cell. Physiol. 233: 3745-3754. https://doi.org/10.1002/jcp.26117
- Schooltink H, Rose-John S. 2002. Cytokines as therapeutic drugs. J. Interferon Cytokine Res. 22: 505-516. https://doi.org/10.1089/10799900252981981
- Belardelli F, Ferrantini M. 2002. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 23: 201-208. https://doi.org/10.1016/S1471-4906(02)02195-6
- Pradere JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. 2016. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci. Signal. 9: ra85.
- Alkhatib A. 2020. Antiviral functional foods and exercise lifestyle prevention of coronavirus. Nutrients 12: 2633.
- Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, et al. 2022. Immunomodulatory functional foods and their molecular mechanisms. Exp. Mol. Med. 54: 1-11. https://doi.org/10.1038/s12276-022-00724-0
- Basak S, Gokhale J. 2022. Immunity boosting nutraceuticals: current trends and challenges. J. Food Biochem. 46: e13902.
- Go MJ, Kim JM, Kang JY, Park SK, Lee CJ, Kim MJ, et al. 2022. Korean red pine (Pinus densiflora) bark extract attenuates Aβ-induced cognitive impairment by regulating cholinergic dysfunction and neuroinflammation. J. Microbiol. Biotechnol. 32: 1154-1167. https://doi.org/10.4014/jmb.2207.07015
- Park JH, Kim JD, Lee TK, Han X, Sim H, Kim B, et al. 2021. Neuroprotective and anti-inflammatory effects of Pinus densiflora bark extract in gerbil hippocampus following transient forebrain ischemia. Molecules 26: 4592.
- Lee SJ, Lee KW, Hur HJ, Chun JY, Kim SY, Lee HJ. 2007. Phenolic phytochemicals derived from red pine (Pinus densiflora) inhibit the invasion and migration of SK-Hep-1 human hepatocellular carcinoma cells. Ann. N Y Acad. Sci. 1095: 536-544. https://doi.org/10.1196/annals.1397.058
- Jo JR, Park JS, Park YK, Chae YZ, Lee GH, Park GY, et al. 2012. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Int. J. Oncol. 40: 1238-1245. https://doi.org/10.3892/ijo.2011.1263
- Shekhova E. 2020. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog. 16: e1008470.
- West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476-480. https://doi.org/10.1038/nature09973
- Fernandez-Boyanapalli RF, Frasch SC, Thomas SM, Malcolm KC, Nicks M, Harbeck RJ, et al. 2015. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease. J. Allergy Clin. Immunol. 135: 517-527.e512. https://doi.org/10.1016/j.jaci.2014.10.034
- Reyes-Becerril M, Angulo C, Cosio-Aviles L, Lopez MG, Calvo-Gomez O. 2022. Cylindropuntia cholla aqueous root rich in phytosterols enhanced immune response and antimicrobial activity in tilapia Oreochromis niloticus leukocytes. Fish Shellfish Immunol. 131: 408-418. https://doi.org/10.1016/j.fsi.2022.10.028
- Lu CC, Chen JK. 2010. Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways. J. Cell. Physiol. 223: 343-351. https://doi.org/10.1002/jcp.22043
- Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al. 2017. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS One 12: e0186546.
- Tumova L, Ducaiova Z, Cheel J, Vokral I, Sepulveda B, Vokurkova D. 2017. Azorella compacta infusion activates human immune cells and scavenges free radicals in vitro. Pharmacogn. Mag. 13: 260-264. https://doi.org/10.4103/0973-1296.204558
- Gou X, Xu W, Liu Y, Peng Y, Xu W, Yin Y, et al. 2022. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting GSDME- and GSDMD-mediated Pyroptosis during Pneumococcal Pneumosepsis. Microbiol Spectr. 10: e0204921.
- Schmit T, Ghosh S, Mathur RK, Barnhardt T, Ambigapathy G, Wu M, et al. 2020. IL-6 deficiency exacerbates allergic asthma and abrogates the protective effect of allergic inflammation against Streptococcus pneumoniae pathogenesis. J. Immunol. 205: 469-479. https://doi.org/10.4049/jimmunol.1900755
- Wada H, Saito K, Kanda T, Kobayashi I, Fujii H, Fujigaki S, et al. 2001. Tumor necrosis factor-alpha (TNF-alpha) plays a protective role in acute viralmyocarditis in mice: a study using mice lacking TNF-alpha. Circulation 103: 743-749. https://doi.org/10.1161/01.CIR.103.5.743
- Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, et al. 2007. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179: 1178-1189. https://doi.org/10.4049/jimmunol.179.2.1178
- van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 32: 110-116. https://doi.org/10.1016/j.it.2011.01.003
- Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr. Polym. 121: 388-402. https://doi.org/10.1016/j.carbpol.2014.12.023