DOI QR코드

DOI QR Code

Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment

  • Jihye Jung (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration) ;
  • Dawon Jo (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration) ;
  • Soo-Jin Kim (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
  • Received : 2023.11.27
  • Accepted : 2023.12.21
  • Published : 2024.03.28

Abstract

Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, in-depth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 ㎍/ml, 125 ㎍/ml, and 125 ㎍/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 ㎍/ml, 250 ㎍/ml, and 500 ㎍/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 ㎍/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.

Keywords

Acknowledgement

This research was supported by grants from the Agenda Project (Agenda Project Nos. PJ01679901) of the Rural Development Administration (RDA), South Korea.

References

  1. He Z, Huang Z, Jiang W, Zhou W. 2019. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms. Front. Microbiol. 10: 2241. 
  2. Kim ME, Na JY, Lee JS. 2018. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol. Immunotoxicol. 40: 219-224.  https://doi.org/10.1080/08923973.2018.1424902
  3. Zhu R, Liu H, Liu C, Wang L, Ma R, Chen B, et al. 2017. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 122: 78-89.  https://doi.org/10.1016/j.phrs.2017.05.019
  4. Akshaya BS, Premraj K, Iswarya C, Muthusamy S, Ibrahim H-IM, Khalil HE, et al. 2023. Cinnamaldehyde inhibits Enterococcus faecalis biofilm formation and promotes clearance of its colonization by modulation of phagocytes in vitro. Microb. Pathog. 181: 106157. 
  5. Buglak NE, Jiang W, Bahnson ESM. 2018. Cinnamic aldehyde inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in Zucker Diabetic Fatty rats. Redox Biol. 19: 166-178.  https://doi.org/10.1016/j.redox.2018.08.013
  6. Wang Y, Wang M, Li M, Zhao T, Zhou L. 2021. Cinnamaldehyde inhibits the growth of Phytophthora capsici through disturbing metabolic homoeostasis. PeerJ. 9: e11339. 
  7. Qu S, Yang K, Chen L, Liu M, Geng Q, He X, et al. 2019. Cinnamaldehyde, a promising natural preservative against Aspergillus flavus. Front. Microbiol. 10: 2895. 
  8. Duan B, Gao Z, Reymick OO, Ouyang Q, Chen Y, Long C, et al. 2021. Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii. Pestic. Biochem. Physiol. 179: 104976. 
  9. Zhao W, Hu A, Ren M, Wei G, Xu H. 2023. First report on Colletotrichum fructicola causing anthracnose in Chinese sorghum and its management using phytochemicals. J. Fungi 9: 279. 
  10. Guo H, Qin X, Wu Y, Yu W, Liu J, Xi Y, et al. 2019. Biocontrol of gray mold of cherry tomatoes with the volatile organic monomer from Hanseniaspora uvarum, Trans-Cinnamaldehyde. Food Bioproc. Tech. 12. 
  11. Wei J, Bi Y, Xue H, Wang Y, Zong Y, Prusky D. 2020. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis. J. Appl. Microbiol. 129: 256-265.  https://doi.org/10.1111/jam.14601
  12. Ahmed B, Jailani A, Lee JH, Lee J. 2022. Inhibition of growth, biofilm formation, virulence, and surface attachment of Agrobacterium tumefaciens by cinnamaldehyde derivatives. Front. Microbiol. 13: 1001865. 
  13. Song YR, Choi MS, Choi GW, Park IK, Oh CS. 2016. Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol J. 32: 363-370.  https://doi.org/10.5423/PPJ.NT.01.2016.0006
  14. Zaczek-Moczydlowska MA, Fleming CC, Young GK, Campbell K, O'Hanlon R. 2019. Pectobacterium and Dickeya species detected in vegetables in Northern Ireland. Eur. J. Plant Pathol. 154: 635-647.  https://doi.org/10.1007/s10658-019-01687-1
  15. Kang M, Kim SJ, Lee JY, Yoon S-R, Kim SH, Ha J-H. 2018. Inactivation of Pectobacterium carotovorum subsp. carotovorum on Chinese cabbage (Brassica rapa L. subsp. pekinensis) by wash treatments with phenolic compounds. Food Sci. Technol. 93: 229-236.  https://doi.org/10.1016/j.lwt.2018.03.045
  16. Chandrashekar BS, PrasannaKumar MK, Parivallal PB, Pramesh D, Banakar SN, Patil SS, et al. 2022. Host range and virulence diversity of Pectobacterium carotovorum subsp. brasiliense strain RDKLR infecting radish in India, and development of a LAMP-based diagnostics. J. Appl. Microbiol. 132: 4400-4412.  https://doi.org/10.1111/jam.15553
  17. Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. 2020. Potential control of potato soft rot disease by the obligate predators bdellovibrio and like organisms. Appl. Environ. Microbiol. 86: e02543-19. 
  18. Wayne P. 2010. Clinical and laboratory standards institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20. 
  19. Sader HS, Fritsche TR, Jones RN. 2009. Potency and bactericidal activity of iclaprim against recent clinical gram-positive isolates. Antimicrob Agents Chemother. 53: 2171-2175.  https://doi.org/10.1128/AAC.00129-09
  20. Capra EJ, Laub MT. 2012. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66: 325-347.  https://doi.org/10.1146/annurev-micro-092611-150039
  21. Vanzi F, Vladimirov S, Knudsen CR, Goldman YE, Cooperman BS. 2003. Protein synthesis by single ribosomes. RNA 9: 1174-1179.  https://doi.org/10.1261/rna.5800303
  22. Garmory HS, Titball RW. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72: 6757-6763.  https://doi.org/10.1128/IAI.72.12.6757-6763.2004
  23. Wilson DF. 2017. Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. J. Physiol. 595: 7023-7038.  https://doi.org/10.1113/JP273839
  24. Wood NJ, Alizadeh T, Bennett S, Pearce J, Ferguson SJ, Richardson DJ, et al. 2001. Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J. Bacteriol. 183: 3606-3613.  https://doi.org/10.1128/JB.183.12.3606-3613.2001
  25. Maklashina E, Berthold DA, Cecchini G. 1998. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J. Bacteriol. 180: 5989-5996.  https://doi.org/10.1128/JB.180.22.5989-5996.1998
  26. Buck D, Spencer ME, Guest JR. 1986. Cloning and expression of the succinyl-coA synthetase genes of Escherichia coli K12. Microbiol. 132: 1753-1762.  https://doi.org/10.1099/00221287-132-6-1753
  27. Marino M, Ramos HC, Hoffmann T, Glaser P, Jahn D. 2001. Modulation of anaerobic energy metabolism of Bacillussubtilis by arfM (ywiD). J. Bacteriol. 183: 6815-6821.  https://doi.org/10.1128/JB.183.23.6815-6821.2001
  28. Zhang Q, Tang H, Yan C, Han W, Peng L, Xu J, et al. 2022. The metabolic adaptation in response to nitrate is critical for Actinobacillus pleuropneumoniae growth and pathogenicity under the regulation of NarQ/P. Infect. Immun. 90: e00239-00222. 
  29. Lopez CA, Miller BM, Rivera-Chavez F, Velazquez EM, Byndloss MX, Chavez-Arroyo A, et al. 2016. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353: 1249-1253.  https://doi.org/10.1126/science.aag3042
  30. Snoep JL, van Bommel M, Lubbers F, Teixeira de Mattos MJ, Neijssel OM. 1993. The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex. J. Gen. Microbiol. 139 Pt 6: 1325-1329.  https://doi.org/10.1099/00221287-139-6-1325
  31. Gill AO, Holley RA. 2004. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 70: 5750-5755.  https://doi.org/10.1128/AEM.70.10.5750-5755.2004
  32. Verdon G, Albers SV, Dijkstra BW, Driessen AJM, Thunnissen A-MWH. 2003. Crystal Structures of the ATPase subunit of the glucose ABC transporter from sulfolobus solfataricus: Nucleotide-free and nucleotide-bound conformations. J. Mol. Biol. 330: 343-358.  https://doi.org/10.1016/S0022-2836(03)00575-8
  33. Wang Y, Ha U, Zeng L, Jin S. 2003. Regulation of membrane permeability by a two-component regulatory system in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47: 95-101.  https://doi.org/10.1128/AAC.47.1.95-101.2003
  34. Topa SH, Palombo EA, Kingshott P, Blackall LL. 2020. Activity of cinnamaldehyde on quorum sensing and biofilm susceptibility to antibiotics in Pseudomonas aeruginosa. Microorganisms 8: 455. 
  35. Li T, Wang D, Liu N, Ma Y, Ding T, Mei Y, et al. 2018. Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas fluorescens by cinnamaldehyde. Int. J. Food Microbiol. 269: 98-106.  https://doi.org/10.1016/j.ijfoodmicro.2018.01.023
  36. Li S, Zhou S, Yang Q, Liu Y, Yang Y, Xu N, et al. 2023. Cinnamaldehyde decreases the pathogenesis of Aeromonas hydrophila by inhibiting quorum sensing and biofilm formation. Fishes 8: 122. 
  37. Ahmed B, Jailani A, Lee JH, Lee J. 2022. Inhibition of growth, biofilm formation, virulence, and surface attachment of Agrobacterium tumefaciens by cinnamaldehyde derivatives. Front. Microbiol. 13: 1001865. 
  38. Pereira WA, Pereira CDS, Assuncao RG, da Silva ISC, Rego FS, Alves LSR, et al. 2021. New Insights into the antimicrobial action of cinnamaldehyde towards Escherichia coli and its effects on intestinal colonization of mice. Biomolecules 11: 302. 
  39. Mousavi F, Bojko B, Bessonneau V, Pawliszyn J. 2016. Cinnamaldehyde characterization as an antibacterial agent toward E. coli metabolic profile using 96-blade solid-phase microextraction coupled to liquid chromatography-mass spectrometry. J. Proteome Res. 15: 963-975.  https://doi.org/10.1021/acs.jproteome.5b00992
  40. Kapoor G, Saigal S, Elongavan A. 2017. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin0 Pharmacol. 33: 300-305.  https://doi.org/10.4103/joacp.JOACP_349_15
  41. Epand RM, Walker C, Epand RF, Magarvey NA. 2016. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta - Biomembr. 1858: 980-987.  https://doi.org/10.1016/j.bbamem.2015.10.018
  42. Nikaido H. 2009. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78: 119-146.  https://doi.org/10.1146/annurev.biochem.78.082907.145923
  43. Czajkowski R, Perombelon MCM, van Veen JA, van der Wolf JM. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and dickeya species: a review. Plant Pathol. 60: 999-1013.  https://doi.org/10.1111/j.1365-3059.2011.02470.x
  44. Vu NT, Roh E, Thi TN, Oh CS. 2022. Antibiotic resistance of Pectobacterium Korean strains susceptible to the bacteriophage phiPccP-1. Res. Plant Dis. 28: 166-171.  https://doi.org/10.5423/RPD.2022.28.3.166
  45. Usai F, Di Sotto A. 2023. trans-cinnamaldehyde as a novel candidate to overcome bacterial resistance: An overview of in vitro studies. Antibiotics (Basel) 12: 254.