DOI QR코드

DOI QR Code

Gromwell (Lithospermum erythrorhizon) Attenuates High-Fat-Induced Skeletal Muscle Wasting by Increasing Protein Synthesis and Mitochondrial Biogenesis

  • Ji-Sun Kim (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Hyunjung Lee (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Ahyoung Yoo (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Hang Yeon Jeong (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Chang Hwa Jung (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Jiyun Ahn (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Tae-Youl Ha (Aging and Metabolism Research Group, Korea Food Research Institute)
  • 투고 : 2023.11.22
  • 심사 : 2023.12.21
  • 발행 : 2024.03.28

초록

Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 μM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.

키워드

과제정보

This research was supported by the Korea Food Research Institute under Grant [KFRI-E0210100] and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries [IPET-821059].

참고문헌

  1. Hruby A, Hu FB. 2015. The epidemiology of obesity: a big picture. Pharmacoeconomics 33: 673-689. https://doi.org/10.1007/s40273-014-0243-x
  2. Roh E, Choi KM. 2020. Health consequences of sarcopenic obesity: a narrative review. Front. Endocrinol. 11: 332.
  3. Baumgartner RN. 2000. Body composition in healthy aging. Ann. N. Y. Acad. Sci. 904: 437-448 https://doi.org/10.1111/j.1749-6632.2000.tb06498.x
  4. Kim TN, Park MS, Ryu JY, Choi HY, Hong HC, Yoo HJ, et al. 2014. Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: the Korean Sarcopenic Obesity Study (KSOS). PLoS One 9: e115407.
  5. Baskin KK, Winders BR, Olson EN. 2015. Muscle as a "mediator" of systemic metabolism. Cell Metab. 21: 237-248. https://doi.org/10.1016/j.cmet.2014.12.021
  6. Rolfe D, Brown GC. 1997. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77: 731-758. https://doi.org/10.1152/physrev.1997.77.3.731
  7. Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO. 2018, Jan 11. Clinical Problems Caused by Obesity. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.Com, Inc.; 2000-.
  8. Kim G, Kim JH. 2020. Impact of skeletal muscle mass on metabolic health. Endocrinol. Metab. 35: 1-6. https://doi.org/10.3803/EnM.2020.35.1.1
  9. Kim JS, Lee H, Jung CH, Lee SJ, Ha TY, Ahn J. 2018. Chicoric acid mitigates impaired insulin sensitivity by improving mitochondrial function. Biosci. Biotechnol. Biochem. 82: 1197-1206. https://doi.org/10.1080/09168451.2018.1451742
  10. Choi WH, Son HJ, Jang YJ, Ahn J, Jung CH, Ha TY. 2017. Apigenin ameliorates the obesity-induced skeletal muscle atrophy by attenuating mitochondrial dysfunction in the muscle of obese mice. Mol. Nutr. Food Res. 61: 1700218.
  11. Jackman RW, Kandarian SC. 2004. The molecular basis of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 287: C834-C843. https://doi.org/10.1152/ajpcell.00579.2003
  12. Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, et al. 2001. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704-1708. https://doi.org/10.1126/science.1065874
  13. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. 2001. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 98: 14440-14445. https://doi.org/10.1073/pnas.251541198
  14. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA. 2012. Mitochondrial signaling contributes to disuse muscle atrophy. Am. J. Physiol. Endocrinol. Metab. 303: E31-E39. https://doi.org/10.1152/ajpendo.00609.2011
  15. Powers SK, Smuder A, Judge A. 2012. Oxidative stress and disuse muscle atrophy: cause or consequence? Curr. Opin. Clin. Nutr. Metab Care 15: 240-245. https://doi.org/10.1097/MCO.0b013e328352b4c2
  16. Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou K. 1999. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew. Chem. Int. Ed. Engl. 38: 270-301 https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3<270::AID-ANIE270>3.0.CO;2-0
  17. Andujar I, Rios JL, Giner RM, Recio MC. 2002. Pharmacological properties of shikonin-a review of literature since. Planta Med. 79: 1685-1697. https://doi.org/10.1055/s-0033-1350934
  18. Gwon SY, Ahn JY, Chung CH, Moon B, Ha TY. 2012. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation. J. Agric. Food Chem. 60: 9089-9096. https://doi.org/10.1021/jf3017404
  19. Gwon SY, Ahn J, Jung CH, Moon B, Ha TY. 2020. Shikonin attenuates hepatic steatosis by enhancing beta oxidation and energy expenditure via AMPK activation. Nutrients 12: 1133
  20. Han J, Weng X, Bi K. 2008. Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon. Food Chem. 106: 2-10. https://doi.org/10.1016/j.foodchem.2007.01.031
  21. Brigham LA, Michaels PJ, Flores HE. 1999. Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol. 119: 417-428. https://doi.org/10.1104/pp.119.2.417
  22. Ishida T, Sakaguchi I. 2007. Protection of human keratinocytes from UVB-induced inflammation using root extract of Lithospermum erythrorhizon. Biol. Pharm. Bull. 30: 928-934. https://doi.org/10.1248/bpb.30.928
  23. Rajasekar S, Park C, Park S, Park YH, Kim ST, Choi YH, et al. 2012. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. J. Ethnopharmacol. 144: 335-345. https://doi.org/10.1016/j.jep.2012.09.017
  24. Jang M, Scheffold J, Rost LM, Cheon H, Bruheim P. 2022. Serum-free cultures of C2C12 cells show different muscle phenotypes which can be estimated by metabolic profiling. Sci. Rep. 12: 827.
  25. Kim YI, Kim JS, Lee H, Jung CH, Ahn J. 2023. Whole red paprika (Capsicum annuum L.) and its orange-red pigment capsanthin ameliorate obesity-induced skeletal muscle atrophy in mice. J. Funct. Foods 107: 105624.
  26. Huynh FK, Green MF, Koves TR, Hirschey MD. 2014. Measurement of fatty acid oxidation rates in animal tissues and cell lines. Methods. Enzymol. 542:391-405. https://doi.org/10.1016/B978-0-12-416618-9.00020-0
  27. Lee H, Kim YI, Nirmala FS, Jeong HY, Seo HD, Ha TY, et al. 2021. Chrysanthemum zawadskil Herbich attenuates dexamethasoneinduced muscle atrophy through the regulation of proteostasis and mitochondrial function. Biomed. Pharmacother. 136: 111226.
  28. Floch J. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  29. Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR. 2008. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys. Ther. 88: 1336-1344. https://doi.org/10.2522/ptj.20080079
  30. Dandona P, Aljada A, Bandyopadhyay A. 2004. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 25: 4-7.
  31. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3: 1014-1019. https://doi.org/10.1038/ncb1101-1014
  32. Batsis JA, Villareal DT. 2018. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 14: 513-537. https://doi.org/10.1038/s41574-018-0062-9
  33. Wang J, Liu L, Sun X-Y, Zhang S, Zhou Y-Q, Ze K, et al. 2022. Evidence and potential mechanism of action of Lithospermum erythrorhizon and its active components for psoriasis. Front. Pharmacol. 13: 781850.
  34. Andujar I, Recio M, Giner R, Rios J. 2013. Traditional chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy. Curr. Med. Chem. 20: 2892-2898. https://doi.org/10.2174/09298673113209990008
  35. Gwon SY, Ahn JY, Jung CH, Moon BK, Ha TY. 2013. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells. BMC Complement. Altern. Med. 13: 207.
  36. Gwon SY, Choi WH, Lee DH, Ahn JY, Jung CH, Moon B, et al. 2015. Shikonin protects against obesity through the modulation of adipogenesis, lipogenesis, and β-oxidation in vivo. J. Funct. Foods 16: 484-493. https://doi.org/10.1016/j.jff.2015.04.040
  37. Haeusler RA, McGraw TE, Accili D. 2018. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19: 31-44. https://doi.org/10.1038/nrm.2017.89
  38. Astrup A, Ryan L, Grunwald GK, Storgaard M, Saris W, Melanson E, et al. 2000. The role of dietary fat in body fatness: evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies. Br. J. Nutr. 83: S25-S32. https://doi.org/10.1017/S0007114500000921
  39. Lee H, Lim J-Y, Choi S-J. 2017. Oleate prevents palmitate-induced atrophy via modulation of mitochondrial ROS production in skeletal myotubes. Oxid. Med. Cell Longev. 2017: 2739721
  40. Cohen S, Nathan JA, Goldberg AL. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat. Rev. Drug Discov. 14: 58-74. https://doi.org/10.1038/nrd4467
  41. Lee S-R, Khamoui AV, Jo E, Park B-S, Zourdos MC, Panton LB, et al. 2015. Effects of chronic high-fat feeding on skeletal muscle mass and function in middle-aged mice. Aging Clin. Exp. Res. 27: 403-411. https://doi.org/10.1007/s40520-015-0316-5
  42. Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, et al. 2010. PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes 59: 1312-1320. https://doi.org/10.2337/db09-1155
  43. Brown LA, Perry RA, Haynie WS, Lee DE, Rosa-Caldwell ME, Brown JL, et al. 2021. Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mech. Ageing Dev. 194: 111404.
  44. Elbein SC, Rasouli N. 2008. Intermuscular lipid: a marker of disordered fat partitioning or the consequence of obesity? Am. J. Clin. Nutr. 87: 1585-1586. https://doi.org/10.1093/ajcn/87.6.1585
  45. Sepe A, Tchkonia T, Thomou T, Zamboni M, Kirkland JL. 2011. Aging and regional differences in fat cell progenitors-a mini-review. Gerontology 57: 66-75. https://doi.org/10.1159/000279755
  46. Langen RC, Van Der Velden JL, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. 2004. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J. 18: 227-237. https://doi.org/10.1096/fj.03-0251com
  47. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399-412. https://doi.org/10.1016/S0092-8674(04)00400-3
  48. Kjobsted R, Hingst JR, Fentz J, Foretz M, Sanz M-N, Pehmoller C, et al. 2018. AMPK in skeletal muscle function and metabolism. FASEB J. 32: 1741.
  49. Kohara K. 2014. Sarcopenic obesity in aging population: current status and future directions for research. Endocrine 45: 15-25.  https://doi.org/10.1007/s12020-013-9992-0