DOI QR코드

DOI QR Code

Escherichia coli Cytoplasmic Expression of Disulfide-Bonded Proteins: Side-by-Side Comparison between Two Competing Strategies

  • Angel Castillo-Corujo (Faculty of Biochemistry and Molecular Medicine, University of Oulu) ;
  • Yuko Uchida (Faculty of Biochemistry and Molecular Medicine, University of Oulu) ;
  • Mirva J. Saaranen (Faculty of Biochemistry and Molecular Medicine, University of Oulu) ;
  • Lloyd W. Ruddock (Faculty of Biochemistry and Molecular Medicine, University of Oulu)
  • Received : 2023.11.17
  • Accepted : 2024.03.18
  • Published : 2024.05.28

Abstract

The production of disulfide bond-containing recombinant proteins in Escherichia coli has traditionally been done by either refolding from inclusion bodies or by targeting the protein to the periplasm. However, both approaches have limitations. Two broad strategies were developed to allow the production of proteins with disulfide bonds in the cytoplasm of E. coli: i) engineered strains with deletions in the disulfide reduction pathways, e.g. SHuffle, and ii) the co-expression of oxidative folding catalysts, e.g. CyDisCo. However, to our knowledge, the relative effectiveness of these strategies has not been properly evaluated. Here, we systematically compare the purified yields of 14 different proteins of interest (POI) that contain disulfide bonds in their native state when expressed in both systems. We also compared the effects of different background strains, commonly used promoters, and two media types: defined and rich autoinduction. In rich autoinduction media, POI which can be produced in a soluble (non-native) state without a system for disulfide bond formation were produced in higher purified yields from SHuffle, whereas all other proteins were produced in higher purified yields using CyDisCo. In chemically defined media, purified yields were at least 10x higher in all cases using CyDisCo. In addition, the quality of the three POI tested was superior when produced using CyDisCo.

Keywords

Acknowledgement

The use of the facilities of the Biocenter Oulu core facilities, a member of Biocenter Finland, is gratefully acknowledged. We also gratefully acknowledge provision of plasmids by Heli I. Alanen and Jenni Limnell.

References

  1. Baneyx F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421
  2. Kaur JJ, Kumar A, Kaur JJ. 2018. Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int. J. Biol. Macromol. 106: 803-822.
  3. Kim K, Choe D, Lee DH, Cho BK. 2020. Engineering biology to construct microbial chassis for the production of difficult-to-express proteins. Int. J. Mol. Sci. 21: 990.
  4. Bosnjak I, Bojovic V, Segvic-Bubic TS, Bielen A. 2014. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank. Protein Eng. Des. Sel. 27: 65-72.
  5. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. 2015. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Fact. 14: 41.
  6. Bardwell JCA, Lee JO, Jander G, Martin N, Belin D, Beckwith J. 1993. A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. USA 90: 1038-1042.
  7. Simmons LC, Yansura DG. 1996. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629-634.
  8. Pilizota T, Shaevitz JW. 2012. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS One 7: e35205.
  9. Lu J, Holmren A. 2014. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66: 75-87
  10. Stewart EJ, Aslund F, Beckwith J. 1998. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17: 5543-5550.
  11. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. 2012. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11: 753.
  12. Faulkner MJ, Veeravalli K, Gon S, Georgiou G, Beckwith J. 2008. Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Proc. Natl. Acad. Sci. USA 105: 6735-6740.
  13. Ren G, Ke N, Berkmen M. 2016. Use of the SHuffle strains in production of proteins. Curr. Protoc. Protein Sci. 85: 5.26.1-5.26.21.
  14. Hatahet F, Nguyen VD, Salo KEH, Ruddock LW. 2010. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microb. Cell Fact. 9: 67-75.
  15. Nguyen VD, Hatahet F, Salo KEH, Enlund E, Zhang C, Ruddock LW. 2011. Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microb. Cell Fact. 10: 1.
  16. Gaciarz A, Veijola J, Uchida Y, Saaranen MJ, Wang C, Horkko S, et al. 2016. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microb. Cell Fact. 15: 22.
  17. Gaciarz A, Khatri NK, Velez-Suberbie ML, Saaranen MJ, Uchida Y, Keshavarz-Moore E, et al. 2017. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media. Microb. Cell Fact. 16: 108.
  18. Castillo-Corujo A, Saaranen MJ, Ruddock LW. 2024. Cytoplasmic production of fabs in chemically defined media in fed-batch fermentation. Protein Expr. Purif. 215: 106404
  19. Biterova E, Esmaeeli M, Alanen HI, Saaranen M, Ruddock LW. 2018. Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease. Sci. Rep. 8: 6752.
  20. Biterova E, Isupov MN, Keegan RM, Lebedev AA, Sohail AA, Liaqat I, et al. 2019. The crystal structure of human microsomal triglyceride transfer protein. Proc. Natl. Acad. Sci. USA 116: 17251-17260.
  21. Sowa ST, Moilanen A, Biterova E, Saaranen MJ, Lehtio L, Ruddock LW. 2021. High-resolution crystal structure of human pERp1, a saposin-like protein involved in IgA, IgM and integrin maturation in the endoplasmic reticulum. J. Mol. Biol. 433: 166826.
  22. Murthy AV, Sulu R, Lebedev A, Salo AM, Korhonen K, Venkatesan R, et al. 2022. Crystal structure of the collagen prolyl 4-hydroxylase (C-P4H) catalytic domain complexed with PDI: toward a model of the C-P4H a2b2 tetramer. J. Biol. Chem. 298: 102614.
  23. Sohail AA, Gaikwad M, Khadka P, Saaranen MJ, Ruddock LW. 2020. Production of extracellular matrix proteins in the cytoplasm of E. coli: making giants in tiny factories. Int. J. Mol. Sci. 21: 688.
  24. Heckler EJ, Rancy PC, Kodali VK, Thorpe C. 2008. Generating disulfides with the Quiescin-sulfhydryl oxidases. Biochim. Biophys. Acta 1783: 567-577.
  25. Safavi-Hemami H, Li Q, Jackson RL, Song AS, Boomsma W, Bandyopadhyay PK, et al. 2016. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides. Proc. Natl. Acad. Sci. USA 113: 3227-3232.
  26. Nielsen LD, Foged MM, Albert A, Bertelsen AB, Soltoft CL, Robinson SD, et al. 2019. The three-dimensional structure of an H-superfamily conotoxin reveals a granulin fold arising from a common ICK cysteine framework. J. Biol. Chem. 294: 8745-8759.
  27. Rimbault C, Knudsen PD, Damsbo A, Boddum K, Ali H, Hackney CM, et al. 2023. A single-chain variable fragment selected against a conformational epitope of a recombinantly produced snake toxin using phage display. N. Biotechnol. 76: 23-32.
  28. Li Z, Kessler W, Van Den Heuvel J, Rinas U. 2011. Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl. Microbiol. Biotechnol. 91: 1203-1213.
  29. Ruotsalainen H, Risteli M, Wang C, Wang Y, Karppinen M, Bergmann U, et al. 2012. The activities of Lysyl Hydroxylase 3 (LH3) regulate the amount and oligomerization status of adiponectin. PLoS One 7: e50045.
  30. Alanen HI, Walker KL, Lourdes Velez Suberbie M, Matos CFRO, Bonisch S, Freedman RB, et al. 2015. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. Biochim. Biophys. Acta 1853: 756-763.
  31. Du T, Buenbrazo N, Kell L, Rahmani S, Sim L, Withers SG, et al. 2019. A bacterial expression platform for production of therapeutic proteins containing human-like O-linked glycans. Cell Chem. Biol. 26: 203-212.
  32. Ahmadzadeh M, Farshdari F, Nematollahi L, Behdani M, Mohit E. 2020. Anti-HER2 scFv expression in Escherichia coli SHuffle ®T7 express cells: effects on solubility and biological activity. Mol. Biotechnol. 62: 18-30.
  33. Harrus D, Khoder-Agha F, Peltoniemi M, Hassinen A, Ruddock L, Kellokumpu S, et al. 2018. The dimeric structure of wild-type human glycosyltransferase B4GalT1. PLoS One 13: e0205571.
  34. Dijkema FM, Nordentoft MK, Didriksen AK, Corneliussen AS, Willemoes M, Winther JR. 2021. Flash properties of Gaussia luciferase are the result of covalent inhibition after a limited number of cycles. Protein Sci. 30: 638-649.
  35. Terpe K. 2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72: 211-222.
  36. Ahmad I, Nawaz N, Darwesh NM, ur Rahman S, Mustafa MZ, Khan SB, et al. 2018. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr. Purif. 144: 12-18.
  37. Tungekar AA, Castillo-Corujo A, Ruddock LW. 2021. So you want to express your protein in Escherichia coli? Essays Biochem. 65: 247-260.
  38. Rosano GL, Morales ES, Ceccarelli EA. 2019. New tools for recombinant protein production in Escherichia coli: a 5-year update. Protein Sci. 28: 1412-1422.
  39. Gaciarz A, Ruddock LW. 2017. Complementarity determining regions and frameworks contribute to the disulfide bond independent folding of intrinsically stable scFv. PLoS One 12: e0189964.
  40. Rinas U, Hoffmann F, Betiku E, Estape D, Marten S. 2007. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J. Biotechnol. 127: 244-257.
  41. Hoffmann F, Rinas U. 2004. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89: 143-161.
  42. Bolanos-Garcia VM, Davies OR. 2006. Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim. Biophys. Acta - Gen. Subj. 1760: 1304-1313.
  43. Haacke A, Fendrich G, Ramage P, Geiser M. 2009. Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Protein Expr. Purif. 64: 185-193.
  44. Chatzi A, Tokatlidis K. 2013. The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis. Antioxidants Redox Signal. 19: 54-62.
  45. Hudson DA, Gannon SA, Thorpe C. 2015. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic. Biol. Med. 80: 171-182.
  46. Bulleid NJ, Ellgaard L. 2011. Multiple ways to make disulfides. Trends Biochem. Sci. 36: 485-492.
  47. Joachim M, Schafer JG, Gerlacj D, Czermak P. 2018. High cell density cultivation of ߡgor/ߡtrxB E.coli in a chemically defined minimal medium with enhanced iron concentration. Process Biochem. 73: 1-5.