DOI QR코드

DOI QR Code

Metabolic Regulation of Longevity and Immune Response in Caenorhabditis elegans by Ingestion of Lacticaseibacillus rhamnosus IDCC 3201 Using Multi-Omics Analysis

  • Daniel Junpyo Lee (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Ju Young Eor (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Min-Jin Kwak (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Junbeom Lee (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • An Na Kang (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Daye Mun (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Hyejin Choi (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Minho Song (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Jong Nam Kim (Department of Food Science & Nutrition, Dongseo University) ;
  • Jun-Mo Kim (Department of Animal Science and Technology, Chung-Ang University) ;
  • Jungwoo Yang (Department of Microbiology, College of Medicine, Dongguk University) ;
  • Hyung Wook Kim (College of Life Sciences, Sejong University) ;
  • Sangnam Oh (Department of Functional Food and Biotechnology, Jeonju University) ;
  • Younghoon Kim (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
  • 투고 : 2024.02.16
  • 심사 : 2024.03.27
  • 발행 : 2024.05.28

초록

Probiotics, specifically Lacticaseibacillus rhamnosus, have garnered attention for their potential health benefits. This study focuses on evaluating the probiotic properties of candidate probiotics L. rhamnosus IDCC 3201 (3201) using the Caenorhabditis elegans surrogate animal model, a well-established in vivo system for studying host-bacteria interactions. The adhesive ability to the host's gastrointestinal tract is a crucial criterion for selecting potential probiotic bacteria. Our findings demonstrated that 3201 exhibits significantly higher adhesive capabilities compared with Escherichia coli OP50 (OP50), a standard laboratory food source for C. elegans and is comparable with the widely recognized probiotic L. rhamnosus GG (LGG). In lifespan assay, 3201 significantly increased the longevity of C. elegans compared with OP50. In addition, preconditioning with 3201 enhanced C. elegans immune response against four different foodborne pathogenic bacteria. To uncover the molecular basis of these effects, transcriptome analysis elucidated that 3201 modulates specific gene expression related to the innate immune response in C. elegans. C-type lectin-related genes and lysozyme-related genes, crucial components of the immune system, showed significant upregulation after feeding 3201 compared with OP50. These results suggested that preconditioning with 3201 may enhance the immune response against pathogens. Metabolome analysis revealed increased levels of fumaric acid and succinic acid, metabolites of the citric acid cycle, in C. elegans fed with 3201 compared with OP50. Furthermore, there was an increase in the levels of lactic acid, a well-known antimicrobial compound. This rise in lactic acid levels may have contributed to the robust defense mechanisms against pathogens. In conclusion, this study demonstrated the probiotic properties of the candidate probiotic L. rhamnosus IDCC 3201 by using multi-omics analysis.

키워드

과제정보

This study was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET-321037-5) and by a National Research Foundation of Korea Grant funded by the Korean government (MEST) (NRF-2021R1A2C3011051) and "Cooperative Research Program for Agriculture Science & Technology Development (Project No. RS-2023-00225838)" Rural Development Administration, Republic of Korea.

참고문헌

  1. Kim B, Kim K, Xu X, Lee H, Pathiraja D, Park DJ, et al. 2023. Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. J. Anim. Sci. Technol. 65: 1341-1344.
  2. Morelli L, Capurso L. 2012. FAO/WHO guidelines on probiotics: 10 years later. J. Clin. Gastroenterol. 46: S1-S2.
  3. Lee D, Goh TW, Kang MG, Choi HJ, Yeo SY, Yang J, et al. 2022. Perspectives and advances in probiotics and the gut microbiome in companion animals. J. Anim. Sci. Technol. 64: 197-217.
  4. Yang S, Deng C, Li Y, Li W, Wu Q, Sun Z, et al. 2022. Complete genome sequence of Lactiplantibacillus plantarum ST, a potential probiotic strain with antibacterial properties. J. Anim. Sci. Technol. 64: 183-186.
  5. Kim B, Meng Z, Xu X, Baek S, Pathiraja D, Choi IG, et al. 2023. Complete genome sequence of Limosilactobacillus fermentum JNU532 as a probiotic candidate for the functional food and feed supplements. J. Anim. Sci. Technol. 65: 271-274.
  6. Kim JY, Kim JY, Kim H, Moon EC, Heo K, Shim JJ, et al. 2022. Immunostimulatory effects of dairy probiotic strains Bifidobacterium animalis ssp. HY8002 and Lactobacillus plantarum HY7717. J. Anim. Sci. Technol. 64: 1117-1131.
  7. Kang AN, Mun D, Ryu S, Jae Lee J, Oh S, Kyu Kim M, et al. 2022. Culturomic-, metagenomic-, and transcriptomic-based characterization of commensal lactic acid bacteria isolated from domestic dogs using Caenorhabditis elegans as a model for aging. J. Anim. Sci. 100: skac323.
  8. Jaafar M, Xu P, Mageswaran UM, Balasubramaniam SD, Solayappan M, Woon J, et al. 2024. Dairy based-LAB improved constipation via increasing fecal bulk and decreasing concentration of fecal threonine while preserving colonic goblet cell count. J. Anim. Sci. Technol. 66: 178-203.
  9. Kaletta T, Hengartner MO. 2006. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug discov. 5: 387-398.
  10. Mahesh R, Ilangovan P, Nongbri D, Suchiang K. 2021. Probiotics interactions and the modulation of major signalling pathways in host model organism Caenorhabditis elegans. Indian J. Microbiol. 61: 404-416.
  11. Clark LC, Hodgkin J. 2014. Commensals, probiotics and pathogens in the Caenorhabditis elegans model. Cell. Microbiol. 16: 27-38.
  12. Choi H, Mun D, Ryu S, Kwak Mj, Kim BK, Park DJ, et al. 2023. Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model. J. Anim. Sci. Technol. 65: 652-663.
  13. Kang A, Kwak MJ, Lee DJ, Lee JJ, Kim MK, Song M, et al. Dietary supplementation with probiotics promotes weight loss by reshaping the gut microbiome and energy metabolism in obese dogs. Microbiol. Spectr. 0: e02552-02523.
  14. Anderson SM, Pukkila-Worley R. 2020. Immunometabolism in Caenorhabditis elegans. PLoS Pathog. 16: e1008897.
  15. Wan QL, Shi X, Liu J, Ding AJ, Pu YZ, Li Z, et al. 2017. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans. Aging (Albany NY) 9: 447-474.
  16. Kim H, Shin M, Ryu S, Yun B, Oh S, Park D-J, et al. 2021. Evaluation of probiotic characteristics of newly isolated lactic acid bacteria from dry-aged Hanwoo beef. Food Sci. Anim. Resour. 41: 468-480.
  17. Park MR, Ryu S, Maburutse BE, Oh NS, Kim SH, Oh S, et al. 2018. Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor. Sci. Rep. 8: 7441.
  18. Kim Y, Mylonakis E. 2012. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses. Infect. Immun. 80: 2500-2508.
  19. Shen P, Kershaw JC, Yue Y, Wang O, Kim KH, McClements DJ, et al. 2018. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chem. 249: 193-201.
  20. Ryu S, Shin M, Yun B, Lee W, Choi H, Kang M, et al. 2021. Bacterial quality, prevalence of pathogens, and molecular characterization of biofilm-producing Staphylococcus aureus from Korean dairy farm environments. Animals 11: 1306.
  21. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
  22. Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12: 357-360.
  23. Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923-930.
  24. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.
  25. Yoo J, Lee J, Zhang M, Mun D, Kang M, Yun B, et al. 2022. Enhanced γ-aminobutyric acid and sialic acid in fermented deer antler velvet and immune promoting effects. J. Anim. Sci. Technol. 64: 166-182.
  26. Williams NT. 2010. Probiotics. Am. J. Health Syst. Pharm. 67: 449-458.
  27. Oh YJ, Lee J, Lim SK, Kwon MS, Lee S, Choi SP, et al. 2023. Complete genome sequence of probiotic Lactobacillus johnsonii 7409N31 isolated from a healthy Hanwoo calf. J. Anim. Sci. Technol. 65: 890-893.
  28. Hammes WP, Vogel RF. 1995. The genus lactobacillus, pp. 19-54. The genera of lactic acid bacteria, Ed. Springer,
  29. Vasquez R, Oh JK, Song JH, Kang DK. 2022. Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. J. Anim. Sci. Technol. 64: 671-695.
  30. Grompone G, Martorell P, Llopis S, Gonzalez N, Genoves S, Mulet AP, et al. 2012. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 7: e52493.
  31. Oh S, Park MR, Son SJ, Kim Y. 2015. Lactobacillus rhamnosus strain GG influences on the longevity and immune response of Caenorhabditis elegans to foodborne pathogens with stimulating microRNAs. FASEB J. 29: 853.853.
  32. Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. 2019. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 103: 6463-6472.
  33. Poupet C, Saraoui T, Veisseire P, Bonnet M, Dausset C, Gachinat M, et al. 2019. Lactobacillus rhamnosus Lcr35 as an effective treatment for preventing Candida albicans infection in the invertebrate model Caenorhabditis elegans: first mechanistic insights. PLoS One 14: e0216184.
  34. Shtonda BB, Avery L. 2006. Dietary choice behavior in Caenorhabditis elegans. J. Exper. Biol. 209: 89-102.
  35. Avery L, You YJ. 2018. C. elegans feeding. WormBook: The Online Review of C. elegans Biology [Internet].
  36. Kim YJ, Cho SB, Song MH, Lee SI, Hong SM, Yun W, et al. 2022. Effects of different Bacillus licheniformis and Bacillus subtilis ratios on nutrient digestibility, fecal microflora, and gas emissions of growing pigs. J. Anim. Sci. Technol. 64: 291-301.
  37. Pees B, Yang W, Kloock A, Petersen C, Peters L, Fan L, et al. 2021. Effector and regulator: diverse functions of C. elegans C-type lectin-like domain proteins. PLoS Pathog. 17: e1009454.
  38. Schulenburg H, Hoeppner MP, Weiner III J, Bornberg-Bauer E. 2008. Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 213: 237-250.
  39. O'Rourke D, Baban D, Demidova M, Mott R, Hodgkin J. 2006. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res. 16: 1005-1016.
  40. Leippe M. 1999. Antimicrobial and cytolytic polypeptides of amoeboid protozoa-effector molecules of primitive phagocytes. Dev. Comp. Immunol. 23: 267-279.
  41. Ciancio A. 2016. Defense and Immune Systems, pp. 205-239. Invertebrate Bacteriology, Ed. Springer,
  42. Amador-Noguez D, Yagi K, Venable S, Darlington G. 2004. Gene expression profile of long-lived Ames dwarf mice and Little mice. Aging Cell 3: 423-441.
  43. Perron JT, Tyson RL, Sutherland GR. 2000. Maintenance of tricarboxylic acid cycle kinetics in Brown-Norway Fischer 344 rats may translate to longevity. Neurosc. Lett. 281: 91-94.
  44. Edwards CB, Copes N, Brito AG, Canfield J, Bradshaw PC. 2013. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS One 8: e58345.
  45. Zarse K, Schulz TJ, Birringer M, Ristow M. 2007. Impaired respiration is positively correlated with decreased life span in Caenorhabditis elegans models of Friedreich Ataxia. FASEB J. 21: 1271-1275.
  46. Ryu S, Kim K, Cho D-Y, Kim Y, Oh S. 2022. Complete genome sequences of Lactococcus lactis JNU 534, a potential food and feed preservative. J. Anim. Sci. Technol. 64: 599-602.
  47. Fernandez MF, Boris S, Barbes C. 2003. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94: 449-455.
  48. Dinev T, Beev G, Tzanova M, Denev S, Dermendzhieva D, Stoyanova A. 2018. Antimicrobial activity of Lactobacillus plantarum against pathogenic and food spoilage microorganisms: a review. Bulg. J. Vet. Med. 21. DOI:10.15547/bjvm.1084.
  49. Shu Q, Gill HS. 2002. Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20TM) against Escherichia coli O157: H7 infection in mice. FEMS Immunol. Med. Microbiol. 34: 59-64.