DOI QR코드

DOI QR Code

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University) ;
  • Liyuan Cao (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University) ;
  • Chunxiang Li (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University)
  • Received : 2023.12.30
  • Accepted : 2024.04.05
  • Published : 2024.07.25

Abstract

In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

Keywords

Acknowledgement

This study is supported by key Laboratory of geotechnical and underground engineering of ministry of education, Tongji University (Project number: KLE-TJGE-B2204).

References

  1. Abdeddaim, M., Djerouni, S., Ounis, A., Athamnia, B. and Noroozinejad Farsangi, E. (2022), "Optimal design of magnetorheological damper for seismic response reduction of base-Isolated structures considering soil-structure interaction", Struct., 38, 733-752. https://doi.org/10.1016/j.istruc.2022.02.039.
  2. Ali, B.S. and Kim, D. (2017), "Wavelet analysis of soil-structure interaction effects on seismic responses of base-isolated nuclear power plants", Earthq. Struct., 13(6), 561-572. https://doi.org/10.12989/eas.2017.13.6.561.
  3. Araz, O. and Noroozinejad Farsangi, E. (2023), "Optimum tuned tandem mass dampers for suppressing seismic-induced vibrations considering soil-structure interaction", Struct., 52,1146-1159. https://doi.org/10.1016/j.istruc.2023.04.017.
  4. Bao, Y., Hu, Z. and Xiong, T. (2013), "A PSO and pattern search based memetic algorithm for SVMs parameters optimization", Neurocomput., 117, 98-106. https://doi.org/10.1016/j.neucom.2013.01.027.
  5. Charmpis, D.C., Komodromos, P. and Phocas, M.C. (2012), "Optimized earthquake response of multi-storey buildings with seismic isolation at various elevations", Earthq. Eng. Struct. Dyn., 41(15), 2289-2310. https://doi.org/10.1002/eqe.2187.
  6. Chen, Q., Zhao, Z., Zhang, R. and Pan, C. (2018), "Impact of soil-structure interaction on structures with inerter system", J. Sound Vib., 433, 1-15. https://doi.org/10.1016/j.jsv.2018.07.008.
  7. Constantinou, M.C. (1987), "A simplified analysis procedure for base-isolated structures on flexible foundation", Earthq. Eng. Struct. Dyn., 15(8), 963-983. https://doi.org/10.1002/EQE.4290150804.
  8. De Angelis, M., Giaralis, A., Petrini, F. and Pietrosanti, D. (2019), "Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems", Eng. Struct., 196, 109250. https://doi.org/10.1016/j.engstruct.2019.05.091.
  9. De Angelis, M, Perno, S. and Reggio, A. (2011), "Dynamic response and optimal design of structures with large mass ratio TMD", Earthq. Eng. Struct. Dyn., 41(1), 41-60. https://doi.org/10.1002/eqe.1117.
  10. De Domenico, D., Michael, F. and Ricciardi, G. (2018), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. Dyn., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098.
  11. De Domenico, D. and Ricciardi, G. (2017), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011.
  12. De Luca, A. and Guidi, L.G. (2019), "State of art in the worldwide evolution of base isolation design", Soil Dyn. Earthq. Eng., 125, 105722. https://doi.org/10.1016/j.soildyn.2019.105722.
  13. De Luca, A. and Guidi, L.G. (2020), "Base isolation issues in Italy: Integrated architectural and structural designs", Soil Dyn. Earthq. Eng., 130, 105912. https://doi.org/10.1016/j.soildyn.2019.105912.
  14. De Luca, A. Guidi, L.G., Brandonisio, G. and Ponzo, F.C. (2022), "Horizontal capacity of base isolation rubber devices under large vertical design stress, valued through full-scale tests", Soil Dyn. Earthq. Eng., 159, 107264. https://doi.org/10.1016/j.soildyn.2022.107264.
  15. Forcellini, D. (2021), "A novel framework to assess soil structure interaction (SSI) effects with equivalent fixed-based models", Appl. Sci., 11(21), 10472. https://doi.org/10.3390/app112110472.
  16. Forcellini, D. (2022), "Seismic fragility of tall buildings considering soil structure interaction (SSI) effects", Struct., 45, 999-1011. https://doi.org/10.1016/j.istruc.2022.09.070.
  17. Forcellini, D. and Kalfas, K.N. (2023), "Inter-story seismic isolation for high-rise buildings", Eng. Struct., 275, 115175. https://doi.org/10.1016/j.engstruct.2022.115175.
  18. Forcellini, D. (2024), "A 3-DOF system for preliminary assessments of the interaction between base isolation (BI) technique and soil structure interaction (SSI) effects for low-rise buildings", Struct., 59, 105803. https://doi.org/10.1016/j.istruc.2023.105803.
  19. Ghannad, M.A. (1998), "A study on the effect of soil-structure interaction on the dynamic properties of structures using simplified methods", Ph.D. Dissertation, Nagoya University, Nagoya, Japan.
  20. Ghannad, M.A. and Jahankhah, H. (2007), "Site-dependent strength reduction factors for soil-structure systems", Soil Dyn. Earthq. Eng., 27(2), 99-110. https://doi.org/10.1016/j.soildyn.2006.06.002.
  21. Giaralis, A. and Petrini, F. (2017), "Wind-induced vibration mitigation in tall buildings using the tuned mass-damperinerter", J. Struct. Eng., 143(9), 04017127. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863.
  22. Giaralis, A. and Taflanidis, A.A. (2018), "Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria", Struct. Control Health Monit., 25(2), e2082. https://doi.org/10.1002/stc.2082.
  23. Guidi, L.G., Brandonisio, G. and De Luca, A. (2023), "Stability issues for elastomeric bearings: analytical formulations compared to experimental results", Procedia Struct. Integr., 44, 1284-1291. https://doi.org/10.1016/j.prostr.2023.01.165.
  24. He, H., Tan, P., Hao, L., Xu, K. and Xiang, Y. (2022), "Optimal design of tuned viscous mass damper for acceleration response control of civil structures under seismic excitations", Eng. Struct., 252, 113685. https://doi.org/10.1016/j.engstruct.2021.113685.
  25. Hessabi, M.R., Mercan, O. and Ozturk, B. (2017), "Exploring the effects of tuned mass dampers on the seismic performance of structures with nonlinear base isolation systems", Earthq. Struct., 12(3), 285-296. https://doi.org/10.12989/eas.2017.12.3.285.
  26. Ismail, M., Ikhouane, F. and Rodellar, J. (2009), "The hysteresis Bouc-Wen model, a survey", Arch. Comput. Method. Eng., 16, 161-88. https://doi.org/10.1007/s11831-009-9031-8.
  27. Jia, Y., Li, L., Wang, C., Lu, Z. and Zhang, R. (2019), "A novel shape memory alloy damping inerter for vibration mitigation", Smart Mater. Struct., 28(11), 115002. https://doi.org/10.1088/1361-665X/ab3dc8.
  28. Kelly, J.M. (1999), "The role of damping in seismic isolation", Earthq. Eng. Struct. Dyn., 28(1), 3-20. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D.
  29. Khoshnoudian, F. and Ahmadi, E. (2013), "Effects of pulse period of near-field ground motions on the seismic demands of soil-MDOF structure systems using mathematical pulse models", Earthq. Eng. Struct. Dyn., 42(11), 1565-1582. https://doi.org/10.1002/eqe.2287.
  30. Kontoni, N.D. and Farghaly, A.A. (2019), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17(4), 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
  31. Krishnamoorthy, A. (2013), "Effect of soil-structure interaction for a building isolated with FPS", Earthq. Struct., 4(3), 285-297. https://doi.org/10.12989/eas.2013.4.3.285.
  32. Li, C.X. and Cao, L.Y. (2019), "High performance active tuned mass damper inerter for structures under the ground acceleration", Earthq. Struct., 16(2), 149-163. https://doi.org/10.12989/eas.2019.16.2.149.
  33. Li, C.X., Chang, K., Cao, L.Y. and Huang, Y. (2021), "Performance of a nonlinear hybrid base isolation system under the ground motions", Soil Dyn. Earthq. Eng., 143, 106589. https://doi.org/10.1016/j.soildyn.2021.106589.
  34. Li, C.X., Pan, H. and Cao, L.Y. (2024). "Pendulum-type tuned tandem mass dampers-inerters for crosswind response control of super-tall buildings", J. Wind Eng. Indust. Aerodyn., 247, 105706. https://doi.org/10.1016/j.jweia.2024.105706.
  35. Luco, J.E. (2014), "Effects of soil-structure interaction on seismic base isolation", Soil Dyn. Earthq. Eng., 66, 167-177. https://doi.org/10.1016/j.soildyn.2014.05.007.
  36. Lu, Y., Hajirasouliha, I. and Marshall, A.M. (2016), "Performance-based seismic design of flexible-base multi-storey buildings considering soil-structure interaction", Eng. Struct., 108, 90-103. https://doi.org/10.1016/j.engstruct.2015.11.031.
  37. Miyazaki, M. (2008), "The next generation of seismic isolation going beyond seismic design dominated by earthquakes", J. Disaster Res., 3(6), 479-502. https://www.fujipress.jp/jdr/dr/dsstr000300060479.
  38. Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons, New Jersey, NJ, USA.
  39. Perez-Rocha, L.E., Aviles-Lopez, J. and Tena-Colunga, A. (2021), "Base isolation for mid-rise buildings in presence of soil-structure interaction", Soil Dyn. Earthq. Eng., 151, 106980. https://doi.org/10.1016/j.soildyn.2021.106980.
  40. Petti, L., Giannattasio, G., Iuliis, M.D. and Palazzo, B. (2010), "Small scale experimental testing to verify the effectiveness of the base isolation and tuned mass dampers combined control strategy", Smart Struct. Syst., 6(1), 57-72. https://doi.org/10.12989/sss.2010.6.1.057.
  41. Radkia, S., Rahnavard, R., Tuwair, H., Abbas, Gandomkar, F. and Napolitano, R. (2020), "Investigating the effects of seismic isolators on steel asymmetric structures considering soil-structure interaction", Struct., 27, 1029-1040. https://doi.org/10.1016/j.istruc.2020.07.019.
  42. Ruiz, R., Taflanidis, A.A., Giaralis, A. and Lopez-Garcia, D. (2018), "Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures", Eng. Struct., 177, 836-850. https://doi.org/10.1016/j.engstruct.2018.08.074.
  43. Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Bar-On, I., ... and Masuda, A. (2002), "An overview of vibration and seismic applications of NiTi shape memory alloy", Smart Mater. Struct., 11(2), 218-229. https://doi.org/10.1088/0964-1726/11/2/305.
  44. Sorrentino, P., Guidi, L.G., Brandonisio, G. and De Luca, A. (2023), "Design spectra to be used in Base Isolation Design in light of recent strong motion records", Procedia Struct. Integr., 44, 1300-1307. https://doi.org/10.1016/j.prostr.2023.01.167.
  45. Spyrakos, C.C., Koutromanos, I.A. and Maniatakis, C.A. (2009), "Seismic response of base-isolated buildings including soil-structure interaction", Soil Dyn. Earthq. Eng., 29(4), 658-668. https://doi.org/10.1016/j.soildyn.2008.07.002.
  46. Tena-Colunga, A., Eduardo, Perez-Rocha, L., Aviles, J. and Cordero-Macias, C. (2015), "Seismic isolation of buildings for power stations considering soil-structure interaction effects", J. Build. Eng., 4, 21-40. https://doi.org/10.1016/j.jobe.2015.08.001.
  47. Tiwari, N.D., Gogoi, A., Hazra, B. and Wang, Q. (2021), "A shape memory alloy-tuned mass damper inerter system for passive control of linked-SDOF structural systems under seismic excitation", J. Sound Vib., 494, 115893. https://doi.org/10.1016/j.jsv.2020.115893.
  48. Veletsos, A.S. and Meek, J.W. (1974), "Dynamic behaviour of building-foundation systems", Earthq. Eng. Struct. Dyn., 3(2), 121-138. https://doi.org/10.1002/eqe.4290030203.
  49. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B. and Tian, Q. (2011), "Self-adaptive learning based particle swarm optimization", Informat. Sci., 181(20), 4515-4538. https://doi.org/10.1016/j.ins.2010.07.013.
  50. Yan, X. and Nie, J. (2000), "Response of SMA superelastic systems under random excitation", J. Sound Vib., 238(5), 893-901. https://doi.org/10.1006/jsvi.2000.3020.
  51. Zhao, Z.P., Chen, Q.J., Zhang, R.F., Pan, C. and Jiang, Y.Y. (2019), "Optimal design of an inerter isolation system considering the soil condition", Eng. Struct., 196, 109324. https://doi.org/10.1016/j.engstruct.2019.109324.
  52. Zhang, R.F., Jiang, J.L., Jia, Y.Q. and Wang, C. (2021), "Influence of mechanical layout of shape memory alloy damping inerter (SDI) systems for vibration control", Smart Mater. Struct., 30(8), 085021. https://doi.org/10.1088/1361-665X/ac0b4c.