DOI QR코드

DOI QR Code

Target Recognition Triggered Split DNAzyme based Colorimetric Assay for Direct and Sensitive Methicillin-Resistance Analysis of Staphylococcus aureus

  • Jin Xu (Department of Anesthesiology, People's Hospital of Chongqing Liang Jiang New Area) ;
  • Dandan Jin (Department of Anesthesiology, People's Hospital of Chongqing Liang Jiang New Area) ;
  • Zhengwei Wang (Department of Anesthesiology, People's Hospital of Chongqing Liang Jiang New Area)
  • Received : 2024.04.08
  • Accepted : 2024.04.18
  • Published : 2024.06.28

Abstract

The accurate and rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) holds significant clinical importance. This work presents a new method for detecting methicillin-resistant Staphylococcus aureus (S. aureus) in clinical samples. The method uses an aptamer-based colorimetric assay that combines a recognizing probe to identify the target and split DNAzyme to amplify the signal, resulting in a highly sensitive and direct analysis of methicillin-resistance. The identification of the PBP2a protein on the membrane of S. aureus in clinical samples leads to the allosterism of the recognizing probe, and thus provides a template for the proximity ligation of split DNAzyme. The proximity ligation of split DNAzyme forms an intact DNAzyme to identify the loop section in the L probe and generates a nicking site to release the loop sequence ("3" and "4" fragments). The "3" and "4" fragments forms an intact sequence to induce the catalytic hairpin assembly, exposing the G-rich section. The released the G-rich sequence of LR probe induces the formation of G-quadruplex-hemin DNAzyme as a colorimetric signal readout. The absorption intensity demonstrated a strong linear association with the logarithm of the S. aureus concentration across a wide range of 5 orders of magnitude dynamic range under the optimized experimental parameters. The limit of detection was calculated to be 23 CFU/ml and the method showed high selectivity for MRSA.

Keywords

References

  1. Callejo-Torre F, Eiros Bouza JM, Olaechea Astigarraga P, Coma Del Corral MJ, Palomar Martinez M, Alvarez-Lerma F, et al. 2016. Risk factors for methicillin-resistant Staphylococcus aureus colonisation or infection in intensive care units and their reliability for predicting MRSA on ICU admission. Infez. Med. 24: 201-209.
  2. David MZ, Daum RS. 2010. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23: 616-687.
  3. Bassetti M, Labate L, Melchio M, Robba C, Battaglini D, Ball L, et al. 2022. Current pharmacotherapy for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Expert Opin. Pharmacother. 23: 361-375.
  4. Burnham CD, Leeds J, Nordmann P, O'Grady J, Patel J. 2017. Diagnosing antimicrobial resistance. Nat. Rev. Microbiol. 15: 697-703.
  5. Dangerfield B, Chung A, Webb B, Seville MT. 2014. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob. Agents Chemother. 58: 859-864.
  6. Lakhundi S, Zhang K. 2018. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 31: e00020-18.
  7. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. 2018. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers. 4: 18033.
  8. Xu L, Liang W, Wen Y, Wang L, Yang X, Ren S, et al. 2018. An ultrasensitive electrochemical biosensor for the detection of mecA gene in methicillin-resistant Staphylococcus aureus. Biosens. Bioelectron. 99: 424-430.
  9. Yang H, Chen H, Cao L, Wang H, Deng W, Tan Y, et al. 2020. An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS-Ag(2)S/polydopamine as photoelectric material and Cu2O as peroxidase mimic tag. Talanta 212: 120797.
  10. Zheng L, Shen Y, Dong W, Zheng C, Zhou R, Lou YL. 2021. Rapid detection and antimicrobial susceptibility testing of pathogens using AgNPs-invertase complexes and the personal glucose meter. Front. Bioeng. Biotechnol. 9: 795415.
  11. Yadav MK, Kwon SK, Huh HJ, Chae SW, Song JJ. 2012. Detection of methicillin-resistant Staphylococcus aureus (MRSA) from nasal samples by multiplex real-time PCR based on dual priming AT-rich primers. Folia Microbiol. (Praha) 57: 37-45.
  12. Gao Y, Fan X, Zhang X, Guan Q, Xing Y, Song W. 2023. HCR/DNAzyme-triggered cascaded feedback cycle amplification for self-powered dual-photoelectrode detection of femtomolar HPV16. Biosens. Bioelectron. 237: 115483.
  13. Pan J, Bao D, Bao E, Chen J. 2021. A hairpin probe-mediated DNA circuit for the detection of the mecA gene of Staphylococcus aureus based on exonuclease III and DNAzyme-mediated signal amplification. Analyst 146: 3673-3678.
  14. Wang JC, Tung YC, Ichiki K, Sakamoto H, Yang TH, Suye SI, et al. 2020. Culture-free detection of methicillin-resistant Staphylococcus aureus by using self-driving diffusometric DNA nanosensors. Biosens. Bioelectron. 148: 111817.
  15. Zhao X, Luo C, Mei Q, Zhang H, Zhang W, Su D, et al. 2020. Aptamer-cholesterol-mediated proximity ligation assay for accurate identification of exosomes. Anal. Chem. 92: 5411-5418.
  16. Wei L, Wang Z, Wang J, Wang X, Chen Y. 2022. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification. Anal. Chim. Acta 1230: 340357.
  17. Xu L, Dai Q, Shi Z, Liu X, Gao L, Wang Z, et al. 2020. Accurate MRSA identification through dual-functional aptamer and CRISPR-Cas12a assisted rolling circle amplification. J. Microbiol. Methods 173: 105917.
  18. Huang Z, Yu X, Yang Q, Zhao Y, Wu W. 2021. Aptasensors for Staphylococcus aureus risk assessment in food. Front. Microbiol. 12: 714265.
  19. Li D, Liu L, Huang Q, Tong T, Zhou Y, Li Z, et al. 2021. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J. Microbiol. Biotechnol. 37: 45.
  20. Wang Y, Wang Z, Zhan Z, Liu J, Deng T, Xu H. 2022. Fluorescence detection of Staphylococcus aureus using vancomycin functionalized magnetic beads combined with rolling circle amplification in fruit juice. Anal. Chim. Acta 1189: 339213.
  21. Li Q, Zhou D, Pan J, Liu Z, Chen J. 2018. Ultrasensitive and simple fluorescence biosensor for detection of the mecA gene of Staphylococcus aureus by using an exonuclease III-assisted cascade signal amplification strategy. Analyst 143: 5670-5675.
  22. Ocsoy I, Yusufbeyoglu S, Yilmaz V, McLamore ES, Ildiz N, Ulgen A. 2017. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-resistant Staphylococcus aureus. Colloids Surf. B. Biointerfaces 159: 16-22.
  23. Li R, Liu Q, Jin Y, Li B. 2020. Sensitive colorimetric determination of microRNA let-7a through rolling circle amplification and a peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme. Mikrochim. Acta 187: 139.
  24. Alamer S, Eissa S, Chinnappan R, Zourob M. 2018. A rapid colorimetric immunoassay for the detection of pathogenic bacteria on poultry processing plants using cotton swabs and nanobeads. Mikrochim. Acta 185: 164.