DOI QR코드

DOI QR Code

Unveiling the Bacterial Community across the Stomach, Hepatopancreas, Anterior Intestine, and Posterior Intestine of Pacific Whiteleg Shrimp

  • Dhiraj Kumar Chaudhary (Department of Microbiology, Pukyong National University) ;
  • Sang-Eon Kim (Department of Microbiology, Pukyong National University) ;
  • Hye-Jin Park (Korea Institute of Ocean Science and Technology) ;
  • Kyoung-Ho Kim (Department of Microbiology, Pukyong National University)
  • Received : 2024.03.19
  • Accepted : 2024.04.11
  • Published : 2024.06.28

Abstract

The gastrointestinal (GI) tract of shrimp, which is comprised of the stomach, hepatopancreas, and intestine, houses microbial communities that play crucial roles in immune defense, nutrient absorption, and overall health. While the intestine's microbiome has been well-studied, there has been limited research investigating the stomach and hepatopancreas. The present study addresses this gap by profiling the bacterial community in these interconnected GI segments of Pacific whiteleg shrimp. To this end, shrimp samples were collected from a local aquaculture farm in South Korea, and 16S rRNA gene amplicon sequencing was performed. The results revealed significant variations in bacterial diversity and composition among GI segments. The stomach and hepatopancreas exhibited higher Proteobacteria abundance, while the intestine showed a more diverse microbiome, including Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Chloroflexi, and Verrucomicrobia. Genera such as Oceaniovalibus, Streptococcus, Actibacter, Ilumatobacter, and Litorilinea dominated the intestine, while Salinarimonas, Sphingomonas, and Oceaniovalibus prevailed in the stomach and hepatopancreas. It is particularly notable that Salinarimonas, which is associated with nitrate reduction and pollutant degradation, was prominent in the hepatopancreas. Overall, this study provides insights into the microbial ecology of the Pacific whiteleg shrimp's GI tract, thus enhancing our understanding of shrimp health with the aim of supporting sustainable aquaculture practices.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (CD20211287).

References

  1. FAO. 2022. The State of World Fisheries and Aquaculture 2022 (Towards Blue Transformation, Issue.
  2. Dhar AK, Cruz-Flores R, Caro LFA, Siewiora HM, Jory D. 2019. Diversity of single-stranded DNA containing viruses in shrimp. VirusDis. 30: 43-57.
  3. Gainza O, Ramirez C, Ramos AS, Romero J. 2018. Intestinal microbiota of white shrimp Penaeus vannamei under intensive cultivation conditions in Ecuador. Microb. Ecol. 75: 562-568.
  4. Landsman A, St-Pierre B, Rosales-Leija M, Brown M, Gibbons W. 2019. Impact of aquaculture practices on intestinal bacterial profiles of Pacific whiteleg shrimp Litopenaeus vannamei. Microorganisms 7: 93.
  5. Hou D, Huang Z, Zeng S, Liu J, Weng S, He J. 2018. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. J. Appl. Microbiol. 125: 792-799.
  6. Garibay-Valdez E, Cicala F, Martinez-Porchas M, Gomez-Reyes R, Vargas-Albores F, Gollas-Galvan T, et al. 2021. Longitudinal variations in the gastrointestinal microbiome of the white shrimp, Litopenaeus vannamei. PeerJ. 9: e11827.
  7. Sommer F, Backhed F. 2013. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11: 227-238.
  8. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57: 1-24.
  9. Cornejo-Granados F, Lopez-Zavala AA, Gallardo-Becerra L, Mendoza-Vargas A, Sanchez F, Vichido R, et al. 2017. Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between Wild, Aquacultured and AHPND/EMS outbreak conditions. Sci. Rep. 7: 11783.
  10. Gao S, Pan L, Huang F, Song M, Tian C, Zhang M. 2019. Metagenomic insights into the structure and function of intestinal microbiota of the farmed Pacific white shrimp (Litopenaeus vannamei). Aquaculture 499: 109-118.
  11. Zhang S, Sun X. 2022. Core gut microbiota of shrimp function as a regulator to maintain immune homeostasis in response to WSSV infection. Microbiol. Spectr. 10: e02465-02421.
  12. Pagan-Jimenez M, Ruiz-Calderon JF, Dominguez-Bello MG, Garcia-Arraras JE. 2019. Characterization of the intestinal microbiota of the sea cucumber Holothuria glaberrima. PLoS One 14: e0208011.
  13. Tapia-Paniagua ST, Fumanal M, Anguis V, Fernandez-Diaz C, Alarcon FJ, Morinigo MA, et al. 2019. Modulation of intestinal microbiota in Solea senegalensis fed low dietary level of Ulva ohnoi. Front. Microbiol. 10: 171.
  14. Cheung MK, Yip HY, Nong W, Law PTW, Chu KH, Kwan HS, et al. 2015. Rapid change of microbiota diversity in the gut but not the hepatopancreas during gonadal development of the new shrimp model Neocaridina denticulata. Mar. Biotechnol. 17: 811-819.
  15. Holt CC, Bass D, Stentiford GD, van der Giezen M. 2021. Understanding the role of the shrimp gut microbiome in health and disease. J. Invertebr. Pathol. 186: 107387.
  16. Imaizumi K, Tinwongger S, Kondo H, Hirono I. 2021. Analysis of microbiota in the stomach and midgut of two penaeid shrimps during probiotic feeding. Sci. Rep. 11: 9936.
  17. Li E, Xu C, Wang X, Wang S, Zhao Q, Zhang M, et al. 2018. Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Rev. Fish. Sci. Aquac. 26: 381-399.
  18. Cheng AC, Yeh SP, Hu SY, Lin HL, Liu CH. 2020. Intestinal microbiota of white shrimp, Litopenaeus vannamei, fed diets containing Bacillus subtilis E20-fermented soybean meal (FSBM) or an antimicrobial peptide derived from B. subtilis E20-FSBM. Aquac. Res. 51: 41-50.
  19. Elizondo-Gonzalez R, Quiroz-Guzman E, Howe A, Yang F, Flater J, Gemin M, et al. 2020. Changes on the intestinal bacterial community of white shrimp Penaeus vannamei fed with green seaweeds. J. Appl. Phycol. 32: 2061-2070.
  20. Sha Y, Liu M, Wang B, Jiang K, Qi C, Wang L. 2016. Bacterial population in intestines of Litopenaeus vannamei fed different probiotics or probiotic supernatant. J. Microbiol. Biotechnol. 26: 1736-1745.
  21. Pilotto MR, Goncalves AN, Vieira FN, Seifert WQ, Bachere E, Rosa RD, et al. 2018. Exploring the impact of the biofloc rearing system and an oral WSSV challenge on the intestinal bacteriome of Litopenaeus vannamei. Microorganisms. 6: 83.
  22. Tzuc JT, Escalante DR, Rojas Herrera R, Gaxiola Cortes G, Ortiz MLA. 2014. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). SpringerPlus. 3: 1-10.
  23. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37: 852-857.
  24. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13: 581-583.
  25. Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61: 1-10.
  26. Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73: 1576-1585.
  27. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6: 1-17.
  28. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISEM J. 6: 610-618.
  29. Lu Y, Zhou G, Ewald J, Pang Z, Shiri T, Xia J. 2023. MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 51: W310-W318.
  30. Sun S, Yang M, Fu H, Ge X, Zou J. 2020. Altered intestinal microbiota induced by chronic hypoxia drives the effects on lipid metabolism and the immune response of oriental river prawn Macrobrachium nipponense. Aquaculture 526: 735431.
  31. Duncan HE, Edberg SC. 1995. Host-microbe interaction in the gastrointestinal tract. Crit. Rev. Microbiol. 21: 85-100.
  32. Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LM. 2021. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13: 886.
  33. Zhou Z, Wen M, Xiang L, Shen H, Jiang G, Cheng J, et al. 2024. Segmental variations in intestinal microbiota composition and functional capacity along the digestive tract of Litopenaeus vannamei. Aquac. Rep. 34: 101922.
  34. Zoqratt MZHM, Eng WWH, Thai BT, Austin CM, Gan HM. 2018. Microbiome analysis of Pacific white shrimp gut and rearing water from Malaysia and Vietnam: implications for aquaculture research and management. PeerJ. 6: e5826.
  35. Du Y, Wang M, Wang B, Liu M, Jiang K, Wang L. 2019. The influence of surface proteins on the probiotic effects of Lactobacillus pentosus HC-2 in the Litopenaeus vannamei hepatopancreas. Fish Shellfish Immunol. 92: 119-124.
  36. Duan Y, Wang Y, Liu Q, Dong H, Li H, Xiong D, et al. 2019. Changes in the intestine microbial, digestion and immunity of Litopenaeus vannamei in response to dietary resistant starch. Sci. Rep. 9: 6464.
  37. Duan Y, Wang Y, Ding X, Xiong D, Zhang J. 2020. Response of intestine microbiota, digestion, and immunity in Pacific white shrimp Litopenaeus vannamei to dietary succinate. Aquaculture 517: 734762.
  38. Fan L, Li QX. 2019. Characteristics of intestinal microbiota in the Pacific white shrimp Litopenaeus vannamei differing growth performances in the marine cultured environment. Aquaculture 505: 450-461.
  39. Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, et al. 2013. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 8: e60802.
  40. van de Water JA, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D, et al. 2016. Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Sci. Rep. 6: 27277.
  41. Zeng S, Huang Z, Hou D, Liu J, Weng S, He J. 2017. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ. 5: e3986.
  42. Rojas V, Rivas L, Cardenas C, Guzman F. 2020. Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules 25: 5804.
  43. Duan Y, Xing Y, Zeng S, Dan X, Mo Z, Zhang J, et al. 2022. Integration of metagenomic and metabolomic insights into the effects of microcystin-LR on intestinal microbiota of Litopenaeus vannamei. Front. Microbiol. 13: 994188.
  44. Anandan R, Dharumadurai D, Manogaran GP. 2016. An introduction to actinobacteria, pp., Actinobacteria-basics and biotechnological applications, Ed. IntechOpen.
  45. Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. 2018. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 50: 421-428.
  46. Huang Z, Zeng S, Xiong J, Hou D, Zhou R, Xing C, et al. 2020. s syndrome. Microbiome 8: 32.
  47. Zheng X, Duan Y, Dong H, Zhang J. 2020. The effect of Lactobacillus plantarum administration on the intestinal microbiota of whiteleg shrimp Penaeus vannamei. Aquaculture 526: 735331.
  48. Liu K, Zong R, Li Q, Fu Y, Xu Y, Wang Y, et al. 2012. Oceaniovalibus guishaninsula gen. nov., sp. nov., a marine bacterium of the family Rhodobacteraceae. Curr. Microbiol. 64: 385-391.
  49. Pedrosa-Gerasmio IR, Nozaki R, Kondo H, Hirono I. 2020. Gut bacterial community profile in Pacific white shrimp Litopenaeus vannamei following 5-aminolevulinic acid supplementation. Aquac. Res. 51: 4075-4086.
  50. Swain SM, Singh C, Arul V. 2009. Inhibitory activity of probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against vibriosis in shrimp Penaeus monodon. World J. Microbiol. Biotechnol. 25: 697-703.
  51. Hasson KW, Wyld EM, Fan Y, Lingsweiller SW, Weaver SJ, Cheng J, et al. 2009. Streptococcosis in farmed Litopenaeus vannamei: a new emerging bacterial disease of penaeid shrimp. Dis. Aquat. Org. 86: 93-106.
  52. Dong Y, Gao J, Wu Q, Ai Y, Huang Y, Wei W, et al. 2020. Co-occurrence pattern and function prediction of bacterial community in Karst cave. BMC Microbiol. 20: 137.
  53. Tu D, Ke J, Luo Y, Hong T, Sun S, Han J, et al. 2022. Microbial community structure and shift pattern of industry brine after a long-term static storage in closed tank. Front. Microbiol. 13: 975271.
  54. de Souza Valente C, Wan AH. 2021. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J. Invertebr. Pathol. 181: 107527.