DOI QR코드

DOI QR Code

Diverse Mycena Fungi and Their Potential for Gastrodia elata Germination

  • Xiao-Han Jin (State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan) ;
  • Yu-Chuan Wang (Gastrodia Tuber Research Institute of Zhaotong) ;
  • Dong Li (State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan) ;
  • Yu Li (State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan) ;
  • Hai-Yan He (The Agriculture and Life Sciences College, Zhaotong University) ;
  • Han-Bo Zhang (State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan)
  • Received : 2024.01.10
  • Accepted : 2024.04.18
  • Published : 2024.06.28

Abstract

It remains to be determined whether there is a geographical distribution pattern and phylogenetic signals for the Mycena strains with seed germination of the orchid plant Gastrodia elata. This study analyzed the community composition and phylogenetics of 72 Mycena strains associated with G. elata varieties (G. elata. f. glauca and G. elata. f. viridis) using multiple gene fragments (ITS+nLSU+SSU). We found that (1) these diverse Mycena phylogenetically belong to the Basidiospore amyloid group. (2) There is a phylogenetic signal of Mycena for germination of G. elata. Those strains phylogenetically close to M. abramsii, M. polygramma, and an unclassified Mycena had significantly higher germination rates than those to M. citrinomarginata. (3) The Mycena distribution depends on geographic site and G. elata variety. Both unclassified Mycena group 1 and the M. abramsii group were dominant for the two varieties of G. elata; in contrast, the M. citrinomarginata group was dominant in G. elata f. glauca but absent in G. elata f. viridis. Our results indicate that the community composition of numerous Mycena resources in the Zhaotong area varies by geographical location and G. elata variety. Importantly, our results also indicate that Mycena's phylogenetic status is correlated with its germination rate.

Keywords

Acknowledgement

This work was supported by Open Research Program of State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan (2022KF002), National Natural Science Foundation of China (31960288), Special Funds for Central Guidance of Local Scientific and Technological Development (202307AB110011) and Innovative Research Foundation for Graduate Students of Yunnan University (KC23235551). Special thanks to Cheng-Shuai Zou (a G. elata farmer in Zhaotong, China) for providing G. elata seeds for this experiment.

References

  1. Aronsen A, Laessoe T. 2016. The genus Mycena s.l. Fungi of Northern Europe 5, pp. 1-376. Ed. Narayana Press, Gylling, Denmark.
  2. Aravindakshan D, Manimohan P. 2015. Mycenas of Kerala, pp. 1-223. Ed. SporePrint Books, Calicut, Kerala, India.
  3. Robich G. 2003. Mycena d'Europa, Ed. Associazione Micologica Bresadola, Trento, Italy.
  4. Geesteranus RA. 1989. Conspectus of the Mycenas of the northern hemisphere. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschppen 92: 331-365.
  5. Kirk P, Cannon P, Minter D, Stalpers J. 2008. Dictionary of the Fungi. 10th ed, pp. 1-771. Ed. CABI International, Wallingford.
  6. Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6: 248-258. https://doi.org/10.1038/ismej.2011.95
  7. Kohout P, Charvatova M, Stursova M, Masinova T, Tomsovsky M, Baldrian P. 2018. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J 12: 692-703. https://doi.org/10.1038/s41396-017-0027-3
  8. Grelet G-A, Ba R, Cheeseman D, Houliston G, Taylor A, Durall D. 2017. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza 27: 831-839. https://doi.org/10.1007/s00572-017-0797-5
  9. Roy B, Thomas D, Soukup H, Peterson I. 2021. Mycena citrinomarginata is associated with roots of the perennial grass Festuca roemeri in Pacific Northwest prairies. Mycologia 113: 693-702. https://doi.org/10.1080/00275514.2021.1884814
  10. Granados-Montero MD, Avelino J, Arauz-Cavallini F, Castro-Tanzi S, Urena N, Arauz F, et al. 2020. Leaf litter and Mycena citricolor inoculum on the American leaf spot epidemic. Agronomia Mesoamericana 31: 77-94. https://doi.org/10.15517/am.v31i1.36614
  11. Merckx V. 2012. Mycoheterotrophy: The Biology of Plants Living on Fungi, Ed. Springer, Now York.
  12. Chase M, Cameron K, Freudenstein J, Pridgeon A, Salazar G, van den Berg C, et al. 2015. An updated classification of Orchidaceae. Botanical J. Linnean Soc. 177: 151-174. https://doi.org/10.1111/boj.12234
  13. Li Y, Li ZH, Schuiteman A, Chase M, Jianwu L, Huang WC, et al. 2019. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes. Mol. Phylogenet. Evol. 139: 106540.
  14. Arditti J, Ghani AKA. 2000. Erratum: numerical and physical properties of orchid seeds and their biological implications. New Phytol. 146: 367-421. https://doi.org/10.1046/j.1469-8137.2000.00587.x
  15. Batty A, Dixon K, Brundrett M, Sivasithamparam K. 2001. Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytol. 152: 511-520. https://doi.org/10.1046/j.0028-646X.2001.00277.x
  16. Rasmussen H, Rasmussen F. 2009. Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118: 334-345. https://doi.org/10.1111/j.1600-0706.2008.17116.x
  17. Li MH, Liu KW, Li Z, Lu HC, Ye QL, Zhang D, et al. 2022. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nature Plants 8: 373-388. https://doi.org/10.1038/s41477-022-01127-9
  18. Rasmussen H. 2002. Recent developments in the study of orchid mycorrhiza. Plant Soil 244: 149-163. https://doi.org/10.1023/A:1020246715436
  19. Leake J. 1994. The biology of myco-heterotrophic ('saprophytic') plants. New Phytol. 127: 171-216. https://doi.org/10.1111/j.1469-8137.1994.tb04272.x
  20. Leake J. 2004. Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr. Opin. Plant Biol. 7: 422-428. https://doi.org/10.1016/j.pbi.2004.04.004
  21. Peterson R, Farquhar M. 1994. Mycorrhizas-Integrated development between roots and fungi. Mycologia 86: 311-326. https://doi.org/10.1080/00275514.1994.12026415
  22. Smith S, Read D. 2008. Mycorrhizal Symbiosis Third Edit, Ed. Academic Press, Cambridge, UK.
  23. Ahn EK, Jeon HJ, Lim EJ, Jung HJ, Park EH. 2007. Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J. Ethnopharmacol. 110: 476-482. https://doi.org/10.1016/j.jep.2006.10.006
  24. Chen YY, Bao ZX, Qu Y, Li W, Li ZZ. 2014. Genetic diversity and population structure of the medicinal orchid Gastrodia elata revealed by microsatellite analysis. Biochem. Syst. Ecol. 54: 182-189. https://doi.org/10.1016/j.bse.2014.01.007
  25. Xu JT, Guo SX. 2000. Retrospect on the research of the cultivation of Gastrodia elata Bl, a rare traditional Chinese medicine. Chinese Med. J. 113: 686-692.
  26. Xu JT, Chun M. 1990. The relation between growth of Gastrodia elata protocorms and fungi. Acta Botanica Sinica 32: 26-31.
  27. Xu JT, Guo SX. 1989. Fungus associated with nutrition of seed germination of Gastrodia elata-Mycena osmudicola Lange. Acta Mycol. Sinica 44: 221-226.
  28. Fan L, Guo SX, Cao WQ, Xiao PG, Xu JT. 1996. Isolation, culture, identification and biological activity of Mycena orchidicola sp. nov. in Cymbidium sinense (Orchidaceae). Acta Mycol. Sinica 15: 251-255.
  29. Guo SX, Fan L, Cao WQ, Xu JT, Xiao PG. 1997. Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China. Mycologia 89: 952-954. https://doi.org/10.1080/00275514.1997.12026866
  30. Guo SX, Fan L, Cao WQ. 1999. Mycena dendrobii, a new mycorrhizal fungus. Mycosystema 18: 141-144.
  31. Tang MJ, Tolgor B. 2020. Study on the germination fungi as Mycena and Gastrodia elata seeds in northeast of China. Northern Horticulture 2020: 118-123.
  32. Liu LN, Zhou GY, Shen AR, Shen BM, Tan Y, Tan ZM. 2022. Mycena subpiligera sp. nov., a symbiotic species from China associated with the seed germination of Gastrodia elata. Mycobiology 50: 294-301. https://doi.org/10.1080/12298093.2022.2132001
  33. Bi Z, Li T, Zheng G. 1986. Taxonomic studies on Mycena from Guangdong province of China. Acta Mycol. Sinica 6: 8-14.
  34. Tai FL. 1979. Sylloge Fungorum Sinicorum, pp. 1-1527. Ed. Science Press, Beijing, China.
  35. Na Q. 2019. Taxonomy and Phylogeny of Mycena in China. PhD thesis. Jilin Agricultural University.
  36. Zolan ME, Pukkila PJ. 1986. Inheritance of DNA methylation in Coprinus cinereus. Mol. Cell. Biol. 6: 195-200. https://doi.org/10.1128/MCB.6.1.195
  37. White T, Bruns T, Lee S, Taylor J. 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics, pp. 315-322. In Innis M, Gelfand D, Sninsky J, White T (eds.), PCR Protocols, a Guide to Methods and Applications, Ed. Academic Press, San Diego, USA
  38. Hopple J, Vilgalys R. 1999. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol. Phylogen. Evol. 13: 1-19. https://doi.org/10.1006/mpev.1999.0634
  39. Ward E, Gray RM. 1992. Generation of a ribosomal DNA probe by PCR and its use in identification of fungi within the Gaeumannomyces-Phialophora complex. Plant Pathol. 41: 730-736. https://doi.org/10.1111/j.1365-3059.1992.tb02556.x
  40. Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  41. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  42. Zhang D, Gao F, Jakovlic I, Zou H, Zhang J, Li W, et al. 2019. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20: 348-355. https://doi.org/10.1111/1755-0998.13096
  43. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539-542. https://doi.org/10.1093/sysbio/sys029
  44. Ronquist F, Huelsenbeck J. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19: 1572-1574.
  45. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  46. Esposito F, Jacquemyn H, Waud M, Tyteca D. 2016. Mycorrhizal fungal diversity and community composition in two closely related Platanthera (Orchidaceae) species. PLoS One 11: e0164108.
  47. Li T, Yang W, Wu S, Selosse M, Gao J. 2021. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 12: 646325.
  48. Oja J, Kohout P, Tedersoo L, Kull T, Koljalg U. 2015. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol. 205: 1608-1618. https://doi.org/10.1111/nph.13223
  49. Jacquemyn H, Brys R, Merckx V, Waud M, Lievens B, Wiegand T. 2014. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol. 202: 616-627. https://doi.org/10.1111/nph.12640
  50. Pecoraro L, Caruso T, Cai L, Gupta VK, Liu Z-J. 2018. Fungal networks and orchid distribution: new insights from above- and belowground analyses of fungal communities. IMA Fungus 9: 1-11. https://doi.org/10.5598/imafungus.2018.09.01.01
  51. Duffy K, Waud M, Schatz B, Petanidou T, Jacquemyn H. 2019. Latitudinal variation in mycorrhizal diversity associated with a European orchid. J. Biogeography 46: 968-980. https://doi.org/10.1111/jbi.13548
  52. Jacquemyn H, Waud M, Merckx V, Brys R, Tyteca D, Hedren M, et al. 2016. Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Sci. Rep. 6: 37182.
  53. Xing X, Gao Y, Zhao Z, Waud M, Duffy K, Selosse M, et al. 2019. Similarity in mycorrhizal communities associating with two widespread terrestrial orchids decays with distance. J. Biogeography 42: 421-433. https://doi.org/10.1353/bio.2019.0045
  54. Park EJ, Lee WY. 2013. In vitro symbiotic germination of myco-heterotrophic Gastrodia elata by Mycena species. Plant Biotechnol. Rep. 7: 185-191. https://doi.org/10.1007/s11816-012-0248-x
  55. Calevo J, Duffy KJ. 2023. Interactions among mycorrhizal fungi enhance the early development of a Mediterranean orchid. Mycorrhiza 33: 229-240. https://doi.org/10.1007/s00572-023-01118-4
  56. Bidartondo M, Read D. 2008. Fungal specificity bottlenecks during orchid germination and development. Mol. Ecol. 17: 3707-3716. https://doi.org/10.1111/j.1365-294X.2008.03848.x
  57. Umata H, Ota Y, Yamada M, Watanabe Y, Gale S. 2013. Germination of the fully myco-heterotrophic orchid Cyrtosia septentrionalis is characterized by low fungal specificity and does not require direct mycobiont contact. Mycoscience 54: 343-352. https://doi.org/10.1016/j.myc.2012.12.003
  58. Chen L, Wang YC, Qin LY, He HY, Yu XL, Yang MZ, et al. 2019. Dynamics of fungal communities during Gastrodia elata growth. BMC Microbiol. 19: 158.
  59. Rasmussen HN. 1995. Terrestrial orchids from seed to mycotrophic plant, pp. 1-444. Ed. Cambridge University Press., Cambridge, U.K.
  60. Taylor DL, Bruns TD, Leake JR, Read DJ. 2003. Mycorrhizal Specificity and Function in Myco-heterotrophic Plants, pp. 375-413. In van der Heijden MGA, Sanders IR (eds.), Mycorrhizal Ecology, Ed. Springer Berlin Heidelberg, Berlin, Heidelberg.
  61. Hui H, Zi XM, Lin H, Liu Q. 2018. Host-specificity of symbiotic mycorrhizal fungi for enhancing seed germination, protocorm formation and seedling development of over-collected medicinal orchid, Dendrobium devonianum. J. Microbiol. 56: 42-48. https://doi.org/10.1007/s12275-018-7225-1
  62. Ogura-Tsujita Y, Yukawa T, Kinoshita A. 2021. Evolutionary histories and mycorrhizal associations of mycoheterotrophic plants dependent on saprotrophic fungi. J. Plant Res. 134: 19-41. https://doi.org/10.1007/s10265-020-01244-6
  63. McCormick M, Whigham D, Sloan D, O'Malley K. 2006. Orchid-fungus fidelity: a marriage meant to last? Ecology 87: 903-911. https://doi.org/10.1890/0012-9658(2006)87[903:OFAMMT]2.0.CO;2
  64. Ventre-Lespiaucq A, Jacquemyn H, Rasmussen H, Mendez M. 2021. Temporal turnover in mycorrhizal interactions: a proof of concept with orchids. New Phytol. 230: 1690-1699. https://doi.org/10.1111/nph.17291
  65. Batstone R, Carscadden K, Afkhami M, Frederickson M. 2018. Using niche breadth theory to explain generalization in mutualisms. Ecology 99: 1039-1050. https://doi.org/10.1002/ecy.2188
  66. Shefferson R, Cowden C, McCormick M, Yukawa T, Ogura-Tsujita Y, Hashimoto T. 2010. Evolution of host breadth in broad interactions: mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts. Mol. Ecol. 19: 3008-3017. https://doi.org/10.1111/j.1365-294X.2010.04693.x
  67. Meng YY, Zhang WL, Selosse MA, Gao JY. 2019. Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 29: 541-547. https://doi.org/10.1007/s00572-019-00907-0
  68. Laere K, Franca S, Vansteenkiste H, Huylenbroeck J, Steppe K, Van Labeke MC. 2011. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol. Plantarum. 33: 1149-1156. https://doi.org/10.1007/s11738-010-0643-2
  69. Shefferson R, Simms E. 2007. Costs and benefits of fruiting to future reproduction in two dormancy-prone orchids. J. Ecol. 95: 865-875. https://doi.org/10.1111/j.1365-2745.2007.01263.x
  70. Shefferson R, Bunch W, Cowden C, Lee YI, Kartzinel T, Yukawa T, et al. 2019. Does evolutionary history determine specificity in broad ecological interactions? J. Ecol. 107.
  71. Jacquemyn H, Brys R, Honnay O, Roldan-Ruiz I, Lievens B, Wiegand T. 2012. Nonrandom spatial structuring of orchids in a hybrid zone of three Orchis species. New Phytol. 193: 454-464. https://doi.org/10.1111/j.1469-8137.2011.03913.x
  72. Tesitelova T, Jersakova J, Kubatova B, Tesitel J, Urfus T, Travnicek P, et al. 2013. Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytol. 199: 1022-1033. https://doi.org/10.1111/nph.12348
  73. Zhou X. 1987. Morphology of Gastrodia elata, pp. 8-9. Ed. Science Press, Beijing, China.