DOI QR코드

DOI QR Code

A Small Epitope Tagging on the C-Terminus of a Target Protein Requires Extra Amino Acids to Enhance the Immune Responses of the Corresponding Antibody

  • Kyungha Lee (Graduate School of Biotechnology, Kyung Hee University) ;
  • Man-Ho Cho (Department of Genetics and Biotechnology, Kyung Hee University) ;
  • Mi-Ju Kim (Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Seong-Hee Bhoo (Graduate School of Green-Bio Science, Kyung Hee University)
  • Received : 2024.02.01
  • Accepted : 2024.04.24
  • Published : 2024.06.28

Abstract

Protein-specific antibodies are essential for various aspects of protein research, including detection, purification, and characterization. When specific antibodies are unavailable, protein tagging is a useful alternative. Small epitope tags, typically less than 10 amino acids, are widely used in protein research due to the simple modification through PCR and reduced impact on the target protein's function compared to larger tags. The 2B8 epitope tag (RDPLPFFPP), reported by us in a previous study, has high specificity and sensitivity to the corresponding antibody. However, when attached to the C-terminus of the target protein in immunoprecipitation experiments, we observed a decrease in detection signal with reduced immunity and low protein recovery. This phenomenon was not unique to 2B8 and was also observed with the commercially available Myc tag. Our study revealed that C-terminal tagging of small epitope tags requires the addition of more than one extra amino acid to enhance (restore) antibody immunities. Moreover, among the amino acids we tested, serine was the best for the 2B8 tag. Our findings demonstrated that the interaction between a small epitope and a corresponding paratope of an antibody requires an extra amino acid at the C-terminus of the epitope. This result is important for researchers planning studies on target proteins using small epitope tags.

Keywords

References

  1. Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Pat Cerretti D, et al. 1988. A short polypeptide marker sequence useful for recombinant protein identification and purification. Biotechnology 6: 1204-1210. https://doi.org/10.1038/nbt1088-1204
  2. Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C. 1993. A simple and efficient method for direct gene deletion in Saccharomycescerevisiae. Nucleic Acids Res. 21: 3329.
  3. Lorenz MC, Muir RS, Lim E, McElver J, Weber SC, Heitman J. 1995. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158: 113-117. https://doi.org/10.1016/0378-1119(95)00144-U
  4. Chubet RG, Brizzard BL. 1996. Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells. BioTechniques 20: 136-141. https://doi.org/10.2144/96201pf01
  5. Hochuli E, Bannwarth W, Dobeli H, Gentz R, Stuber D. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Biotechnology 6: 1321-1325. https://doi.org/10.1038/nbt1188-1321
  6. Field J, Nikawa JI, Broek D, MacDonald B, Rodgers L, Wilson IA, et al. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8: 2159-2165. https://doi.org/10.1128/MCB.8.5.2159
  7. Moon JM, Kim GY, Rhim H. 2012. A new idea for simple and rapid monitoring of gene expression: requirement of nucleotide sequences encoding an N-terminal HA tag in the T7 promoter-driven expression in E. coli. Biotechnol. Lett. 34: 1841-1846. https://doi.org/10.1007/s10529-012-0966-8
  8. Evan GI, Lewis GK, Ramsay G, Bishop JM. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5: 3610-3616. https://doi.org/10.1128/MCB.5.12.3610
  9. Hillman MC, Yang LS, Sun S, Duke JL, O'Neil KT, Kochie JE, et al. 2001. A comprehensive system for protein purification and biochemical analysis based on antibodies to c-myc peptide. Protein Expr. Purif. 23: 359-368. https://doi.org/10.1006/prep.2001.1514
  10. Jarvik JW, Telmer CA. 1998. Epitope tagging. Annu. Rev. Genet. 32: 601-618. https://doi.org/10.1146/annurev.genet.32.1.601
  11. Goel A, Colcher D, Koo JS, Booth BJ, Pavlinkova G, Batra SK. 2000. Relative position of the hexahistidine tag effects binding properties of a tumor-associated single-chain Fv construct. Biochim. Biophys. Acta Gen. Subj. 1523: 13-20. https://doi.org/10.1016/S0304-4165(00)00086-6
  12. Ledent P, Duez C, Vanhove M, Lejeune A, Fonze E, Charlier P, et al. 1997. Unexpected influence of a C-terminal-fused His-tag on the processing of an enzyme and on the kinetic and folding parameters. FEBS Lett. 413: 194-196. https://doi.org/10.1016/S0014-5793(97)00908-3
  13. Chant A, Kraemer-Pecore CM, Watkin R, Kneale GG. 2005. Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr. Purif. 39: 152-159. https://doi.org/10.1016/j.pep.2004.10.017
  14. Cravchik A, Matus A. 1993. A novel strategy for the immunological tagging of cDNA constructs. Gene 137: 139-143. https://doi.org/10.1016/0378-1119(93)90262-2
  15. Kim TL, Yoo J, Sangsawang K, Cho MH, Yang SH, Suh JW, et al. 2014. Epitope mapping of monoclonal antibodies for the Deinococcus radiodurans bacteriophytochome. Protein Sci. 23: 812-818. https://doi.org/10.1002/pro.2464
  16. Kim TL, Cho MH, Sangsawang K, Bhoo SH. 2016. Fine mutational analysis of 2B8 and 3H7 tag epitopes with corresponding specific monoclonal antibodies. Mol. Cells 39: 460.
  17. Wegner GJ, Lee HJ, Corn RM. 2002. Characterization and optimization of peptide arrays for the study of epitope- antibody interactions using surface plasmon resonance imaging. Anal. Chem. 74: 5161-5168. https://doi.org/10.1021/ac025922u
  18. Schiweck W, Buxbaum B, Schatzlein C, Neiss HG, Skerra A. 1997. Sequence analysis and bacterial production of the anti-c-myc antibody 9E10: the VH domain has an extended CDR-H3 and exhibits unusual solubility. FEBS Lett. 414: 33-38. https://doi.org/10.1016/S0014-5793(97)00983-6
  19. Chattoraj M, King BA, Bublitz GU, Boxer SG. 1996. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. USA 93: 8362-8367. https://doi.org/10.1073/pnas.93.16.8362
  20. Eriksson S, Raivio E, Kukkonen JP, Eriksson K, Lindqvist C. 1996. Green fluorescent protein as a tool for screening recombinant baculoviruses. J. Virol. Methods 59: 127-133. https://doi.org/10.1016/0166-0934(96)02032-0
  21. Schuchner S, Behm C, Mudrak I, Ogris E. 2020. The Myc tag monoclonal antibody 9E10 displays highly variable epitope recognition dependent on neighboring sequence context. Sci. Signal. 13: eaax9730.
  22. Brizzard B. 2008. Epitope tagging. BioTechniques 44: 693-695. https://doi.org/10.2144/000112841
  23. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, et al. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15: 963-972. https://doi.org/10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W
  24. Munro S, Pelham H. 1984. Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp 70. EMBO J. 3: 3087-3093. https://doi.org/10.1002/j.1460-2075.1984.tb02263.x
  25. Fritze CE, Anderson TR. 2000. Epitope tagging: general method for tracking recombinant proteins. Methods Enzymol. 327: 3-16. https://doi.org/10.1016/S0076-6879(00)27263-7
  26. Gasic K, Korban SS. 2005. Nonspecific binding of monoclonal anti-FLAG M2 antibody in Indian mustard (Brassica juncea). Plant Mol. Biol. Rep. 23: 9-16. https://doi.org/10.1007/BF02772643
  27. Shevtsova Z, Malik J, Michel U, Scholl U, Bahr M, Kugler S. 2006. Evaluation of epitope tags for protein detection after in vivo CNS gene transfer. Eur. J. Neurosci. 23: 1961-1969. https://doi.org/10.1111/j.1460-9568.2006.04725.x
  28. Choi H, Kim TL, Cho MH, Bhoo SH. 2017. Immuno-affinity purification of 2B8-tagged proteins. Appl. Biol. Chem. 60: 563-568. https://doi.org/10.1007/s13765-017-0310-z
  29. Palmer E, Freeman T. 2004. Investigation into the use of C-and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comp. Funct. Genomics 5: 342-353. https://doi.org/10.1002/cfg.405
  30. Hernan R, Heuermann K, Brizzard B. 2000. Multiple epitope tagging of expressed proteins for enhanced detection. BioTechniques 28: 789-793. https://doi.org/10.2144/00284pf01
  31. Graumann J, Dunipace LA, Seol JH, McDonald WH, Yates JR, Wold BJ, et al. 2004. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol. Cell. Proteomics 3: 226-237. https://doi.org/10.1074/mcp.M300099-MCP200