DOI QR코드

DOI QR Code

The Metabolic Functional Feature of Gut Microbiota in Mongolian Patients with Type 2 Diabetes

  • Yanchao Liu (Department of Epidemiology, School of Public Health, Inner Mongolia Medical University) ;
  • Hui Pang (Laboratory for Molecular Epidemiology in Chronic Diseases, School of Public Health, Inner Mongolia Medical University) ;
  • Na Li (Laboratory for Molecular Epidemiology in Chronic Diseases, School of Public Health, Inner Mongolia Medical University) ;
  • Yang Jiao (College of Continuing Education (IMAU Branch of Educational and Training Center for Central Agricultural Cadre), Inner Mongolia Agricultural University) ;
  • Zexu Zhang (Department of Epidemiology, School of Public Health, Inner Mongolia Medical University) ;
  • Qin Zhu (Department of Epidemiology, School of Public Health, Inner Mongolia Medical University)
  • 투고 : 2024.02.14
  • 심사 : 2024.04.10
  • 발행 : 2024.06.28

초록

The accumulating evidence substantiates the indispensable role of gut microbiota in modulating the pathogenesis of type 2 diabetes. Uncovering the intricacies of the mechanism is imperative in aiding disease control efforts. Revealing key bacterial species, their metabolites and/or metabolic pathways from the vast array of gut microorganisms can significantly contribute to precise treatment of the disease. With a high prevalence of type 2 diabetes in Inner Mongolia, China, we recruited volunteers from among the Mongolian population to investigate the relationship between gut microbiota and the disease. Fecal samples were collected from the Volunteers of Mongolia with Type 2 Diabetes group and a Control group, and detected by metagenomic analysis and untargeted metabolomics analysis. The findings suggest that Firmicutes and Bacteroidetes phyla are the predominant gut microorganisms that exert significant influence on the pathogenesis of type 2 diabetes in the Mongolian population. In the disease group, despite an increase in the quantity of most gut microbial metabolic enzymes, there was a concomitant weakening of gut metabolic function, suggesting that the gut microbiota may be in a compensatory state during the disease stage. β-Tocotrienol may serve as a pivotal gut metabolite produced by gut microorganisms and a potential biomarker for type 2 diabetes. The metabolic biosynthesis pathways of ubiquinone and other terpenoid quinones could be the crucial mechanism through which the gut microbiota regulates type 2 diabetes. Additionally, certain Clostridium gut species may play a pivotal role in the progression of the disease.

키워드

과제정보

We express our gratitude to all participants who contributed to the study, and extend our appreciation to Wuhan Metware Biotechnology Co., Ltd. for their invaluable assistance in sample detection. This study was founded by Inner Mongolia Autonomous Region Natural Science Fund (2023QN08024), "Science and Technology Million Project" of Inner Mongolia Medical University (YKD2020KJBW005) and Inner Mongolia Medical University Education and Teaching Reform Project (NYJXGG2022146).

참고문헌

  1. Chaudhari SN, McCurry MD, Devlin AS. 2021. Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nat. Chem. Biol. 17: 1046-1056. 
  2. Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H, et al. 2020.Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ 369: m997. 
  3. Duan M, Xi Y, Tian Q, Na B, Han K, Zhang X, et al. 2022. Prevalence, awareness, treatment and control of type 2 diabetes and its determinants among Mongolians in China: a cross-sectional analysis of IMAGINS 2015-2020. BMJ Open 12: e063893.
  4. Zhou Z, Sun B, Yu D, Zhu C. 2022. Gut microbiota: an important player in type 2 diabetes mellitus. Front. Cell. Infect. Microbiol. 12: 834485. 
  5. Wu H, Tremaroli V, Schmidt C, Lundqvist A, Olsson LM, Kramer M, et al. 2020. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32: 379-390.e3. 
  6. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214. 
  7. Sharma S, Tripathi P. 2019. Gut microbiome and type 2 diabetes: where we are and where to go?. J. Nutr. Biochem. 63: 101-108. 
  8. Zhu T, Goodarzi MO. 2020. Metabolites linking the gut microbiome with risk for type 2 diabetes. Curr. Nutr. Rep. 9: 83-93. 
  9. Liu Y, Wang M, Li W, Gao Y, Li H, Cao N, et al. 2023. Differences in gut microbiota and its metabolic function among different fasting plasma glucose groups in Mongolian population of China. BMC Microbiol. 23: 102. 
  10. Yu G, Xu C, Zhang D, Ju F, Ni Y. 2022. MetOrigin: discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. IMeta 1: e10. 
  11. Ringner M. 2008. What is principal component analysis?. Nat. Biotechnol. 26: 303-304. 
  12. Young MP, Scannell JW, O'Neill MA, Hilgetag CC, Burns G, Blakemore C. 1995. Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Philos Trans. R Soc. Lond B Biol. Sci. 348: 281-308. 
  13. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60. 
  14. Thevenot EA, Roux A, Xu Y, Ezan E, Junot C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14: 3322-3335. 
  15. Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19: 55-71. 
  16. Krautkramer KA, Fan J, Backhed F. 2021. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19: 77-94. 
  17. Sun Z, Yin S, Zhao C, Fan L, Hu H. 2022. Inhibition of PD-L1-mediated tumor-promoting signaling is involved in the anti-cancer activity of β-tocotrienol. Biochem. Biophys. Res. Commun. 617 (Pt 2): 33-40. 
  18. Montonen J, Knekt P, Jarvinen R, Reunanen A. 2004. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 27: 362-366. 
  19. Harlan L, Mena LT, Ramalingam L, Jayarathne S, Shen CL, Moustaid-Moussa N. 2020. Mechanisms mediating anti-inflammatory effects of delta-tocotrienol and tart cherry anthocyanins in 3T3-L1 adipocytes. Nutrients 12: 3356. 
  20. Hosomi K, Saito M, Park J, Murakami H, Shibata N, Ando M, et al. 2022. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat. Commun. 13: 4477. 
  21. Nicoletti F, Zaccone P, Di Marco R, Magro G, Grasso S, Morrone S, et al. 1995. Effects of sodium fusidate in animal models of insulin-dependent diabetes mellitus and septic shock. Immunology 85: 645-50. 
  22. Nicoletti F, Di Marco R, Conget I, Gomis R, Edwards C 3rd, Papaccio G, et al. 2000. Sodium fusidate ameliorates the course of diabetes induced in mice by multiple low doses of streptozotocin. J. Autoimmun. 15: 395-405. 
  23. Conget I, Aguilera E, Pellitero S, Naf S, Bendtzen K, Casamitjana R, et al. 2005. Lack of effect of intermittently administered sodium fusidate in patients with newly diagnosed type 1 diabetes mellitus: the FUSIDM trial. Diabetologia 48: 1464-1468. 
  24. Zabela V, Sampath C, Oufir M, Butterweck V, Hamburger M. 2020. Single dose pharmacokinetics of intravenous 3,4-dihydroxyphenylacetic acid and 3-hydroxyphenylacetic acid in rats. Fitoterapia 142: 104526. 
  25. Dhanya R. 2022. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed. Pharmacother. 146: 112560. 
  26. Duncan SH, Louis P, Flint HJ. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 70: 5810-5817. 
  27. Macfarlane S, Macfarlane GT. 2006. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl. Environ. Microbiol. 72: 6204-6211.