Acknowledgement
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Crop Viruses and Pests Response Industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321097-3). It was additionally supported by a Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2021R1A6C101A416), and also by a project to train professional personnel in biological materials under the Ministry of Environment.
References
- Weaver DJ. 1974. A gummosis disease of peach trees caused by Botryosphaeria dothidea. Phytopathology 64: 1429-1432. https://doi.org/10.1094/Phyto-64-1429
- Beckman TG, Pusey PL, Bertrand PF. 2003. Impact of fungal gummosis on peach trees. HortScience 38: 1141-1143. https://doi.org/10.21273/HORTSCI.38.6.1141
- Li HY, Cao RB, Mu YT. 1995. In vitro inhibition of Botryosphaeria dothidea and Lasiodiplodia theobromae, and chemical control of gummosis disease of Japanese apricot and peach trees in Zhejiang Province, China. Crop Prot. 14: 187-191. https://doi.org/10.1016/0261-2194(95)00011-A
- Wang F, Zhao L, Li G, Huang J, Hsiang T. 2011. Identification and characterization of Botryosphaeria spp. causing gummosis of peach trees in Hubei Province, Central China. Plant Dis. 95: 1378-1384. https://doi.org/10.1094/PDIS-12-10-0893
- Okie WR, Prince VE, Reilly CC. 1982. 'Sunprince' Peach1 . HortScience. 17: 414-414. https://doi.org/10.21273/HORTSCI.17.3.414
- Michailides TJ. 1991. Pathogenicity, distribution, sources of inoculum, and infection courts of Botryosphaeria dothidea on pistachio. Phytopathology 81: 566-573. https://doi.org/10.1094/Phyto-81-566
- Jo Y, Jung DR., Park TH, Lee D, Park MK, Lim K, et al. 2022. Changes in microbial community structure in response to gummosis in peach tree bark. Plants 11: 2834.
- Munger R, Isacson P, Hu S, Burns T, Hanson J, Lynch CF, et al. 1997. Intrauterine growth retardation in Iowa communities with herbicide-contaminated drinking water supplies. Environ. Health Perspect. 105: 308-314. https://doi.org/10.1289/ehp.97105308
- Cowen LE. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6: 187-198. https://doi.org/10.1038/nrmicro1835
- Heimpel GE, Mills N. 2017. Biological control as intentional invasions, pp. 19-146. In Biological Control: Ecology and Applications. Cambridge University Press, Cambridge.
- Kohl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10: 845.
- Raaijmakers JM, Vlami M, de Souza JT. 2002. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81: 537-547. https://doi.org/10.1023/A:1020501420831
- Handelsman J, Stabb EV. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869 https://doi.org/10.2307/3870235
- Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
- Islam T, Rabbee MF, Choi J, Baek KH. 2022. Biosynthesis, molecular regulation, and application of bacilysin produced by Bacillus species. Metabolites 12: 397.
- Bonmatin JM, Laprevote O, Peypoux F. 2003. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activitystructure relationships to design new bioactive agents. Comb. Chem. High Throughput Screen 6: 541-556. https://doi.org/10.2174/138620703106298716
- Mazzola M, de Bruijn I, Cohen MF, Raaijmakers JM. 2009. Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl. Environ. Microbiol. 75: 6804-6811. https://doi.org/10.1128/AEM.01272-09
- Huang CJ, Wang TK, Chung SC, Chen CY. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38: 82-88.
- Ye M, Sun L, Yang R, Wang Z, Qi K. 2017. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. R. Soc. Open Sci. 4: 171012.
- Loper JE, Buyer JS. 1991. Siderophores in microbial interactions on plant-surfaces. Mol. Plant Microbe Interact. 4: 5-13. https://doi.org/10.1094/MPMI-4-005
- Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, et al. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63.
- Kim YT, Kim SE, Lee WJ, Fumei Z, Cho MS, Moon JS, et al. 2020. Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PloS One 15: e0234177.
- Lister JB. 1878. On the lactic fermentation and its bearings on pathology. Trans. Pathol. Soc. Lond. 29: 425-467.
- Camele I, Elshafie HS, Caputo L, Sakr SH. De Feo V. 2019. Bacillus mojavensis: biofilm formation and biochemical investigation of its bioactive metabolites. J. Biol. Res. doi.org/10.4081/jbr.2019.8296
- De S, Kaur G, Roy A, Dogra G, Kaushik R, Yadav P, et al. 2010. A simple method for the efficient isolation of genomic DNA from Lactobacilli isolated from traditional indian fermented milk (dahi). Indian J. Microbiol. 50: 412-418. https://doi.org/10.1007/s12088-011-0079-4
- Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mole. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-8. https://doi.org/10.1006/meth.2001.1262
- Alajlani M, Shiekh A, Hasnain S, Brantner A. 2016. Purification of bioactive lipopeptides produced by Bacillus subtilis Strain BIA. Chromatographia 79: 1527-1532. https://doi.org/10.1007/s10337-016-3164-3
- Sazci A, Erenler K, Radford A. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61: 559-562. https://doi.org/10.1111/j.1365-2672.1986.tb01729.x
- Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. 2006. Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 31: 47-53.
- Souza CP, Burbano-Rosero EM, Almeida BC, Martins GG, Albertini LS, Rivera ING. 2009. Culture medium for isolating chitinolytic bacteria from seawater and plankton. World J. Microbiol. Biotechnol. 25: 2079-2082. https://doi.org/10.1007/s11274-009-0098-z
- Louden BC, Haarmann D, Lynne AM. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12: 51-53. https://doi.org/10.1128/jmbe.v12i1.249
- Chen XH, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, et al. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38-44. https://doi.org/10.1016/j.jbiotec.2008.10.015
- Zaid DS, Cai S, Hu C, Li Z, Li Y. 2022. Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects. Microbiol. Spectr. 10: e0216921.
- Huang X, Lu Z, Zhao H, Bie X, Lu F, Yang S. 2006. Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int. J. Pept. Res. Ther. 12: 373-377. https://doi.org/10.1007/s10989-006-9041-4
- Bezza FA., Chirwa EMN. 2017. The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chem. Eng. J. 309: 563-576. https://doi.org/10.1016/j.cej.2016.10.055
- Rofeal M, El-Malek FA. 2021. Valorization of lipopeptides biosurfactants as anticancer agents. Int. J. Pept. Res. Ther. 27: 447-455. https://doi.org/10.1007/s10989-020-10105-8
- Zhang Q, Yong D, Zhang Y, Shi X, Li B, Li G, Liang W, Wang C. 2016. Streptomyces rochei A-1 induces resistance and defense-related responses against Botryosphaeria dothidea in apple fruit during storage. Postharvest Biol. Technol. 115: 30-37. https://doi.org/10.1016/j.postharvbio.2015.12.013
- Sur S, Romo TD, Grossfield A. 2018. Selectivity and mechanism of fengycin, an antimicrobial lipopeptide, from molecular dynamics. J. Phys. Chem. B. 122: 2219-2226. https://doi.org/10.1021/acs.jpcb.7b11889
- Balhara M, Chaudhary R, Ruhil S, Singh B, Dahiya N, Parmar VS, et al. 2016. Siderophores; iron scavengers: the novel & promising targets for pathogen specific antifungal therapy. Expert Opin. Ther. Targets. 20: 1477-1489. https://doi.org/10.1080/14728222.2016.1254196
- Yuan H, Shi B, Wang L, Huang T, Zhou Z, Hou H, et al. 2022. Isolation and characterization of Bacillus velezensis strain P2-1 for biocontrol of apple postharvest decay caused by Botryosphaeria dothidea. Front. Microbiol. 12: 808938
- Zhang D, Shen X, Zhang H, Huang X, He H, Ye J, et al. 2022. Integrated transcriptomic and metabolic analyses reveal that ethylene enhances peach susceptibility to Lasiodiplodia theobromae-induced gummosis. Hortic. Res. 9: uhab019.