과제정보
This work was supported by the Korea Institute of Marine Science & Technology Promotion (20220252) and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (821030-3). This work was also supported by the National Research Foundation of Korea (RS-2023-00274576).
참고문헌
- Gordon S. 1998. The role of the macrophage in immune regulation. Res. Immunol. 149: 685-688. https://doi.org/10.1016/S0923-2494(99)80039-X
- Chazaud B. 2014. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 219: 172-178. https://doi.org/10.1016/j.imbio.2013.09.001
- Koh TJ, DiPietro LA. 2011. Inflammation and wound healing: the role of the macrophage. Exp. Rev. Mol. Med. 13: e23.
- Gordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5: 953-964. https://doi.org/10.1038/nri1733
- McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. 2013. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 110: 17253-17258. https://doi.org/10.1073/pnas.1308887110
- Wang X, Zhou L. 2022. The many roles of macrophages in skeletal muscle injury and repair. Front. Cell Dev. Biol. 10: 952249.
- Tidball JG. 2005. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288: R345-R353. https://doi.org/10.1152/ajpregu.00454.2004
- Yang W, Hu P. 2018. Skeletal muscle regeneration is modulated by inflammation. J. Orthop. Translat. 13: 25-32. https://doi.org/10.1016/j.jot.2018.01.002
- Arnold L, Henry A, Poron F, Baba-Amer Y, Van Rooijen N, Plonquet A, et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204: 1057-1069. https://doi.org/10.1084/jem.20070075
- Tidball JG, Villalta SA. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Compar. Physiol. 298: R1173-R1187. https://doi.org/10.1152/ajpregu.00735.2009
- Costamagna D, Costelli P, Sampaolesi M, Penna F. 2015. Role of inflammation in muscle homeostasis and myogenesis. Mediators Inflamm. 2015: 805172.
- Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. 2004. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18: 39-51. https://doi.org/10.1096/fj.03-0610com
- Lecker SH, Solomon V, Mitch WE, Goldberg AL. 1999. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J. Nutr. 129: 227S-237S. https://doi.org/10.1093/jn/129.1.227S
- Jackman RW, Kandarian SC. 2004. The molecular basis of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 287: C834-C843. https://doi.org/10.1152/ajpcell.00579.2003
- Merz KE, Thurmond DC. 2011. Role of skeletal muscle in insulin resistance and glucose uptake. Compr. Physiol. 10: 785-809. https://doi.org/10.1002/cphy.c190029
- Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, et al. 2016. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc. Immunol. Rev. 22: 94-109.
- Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, et al. 2022. Macrophages, chronic inflammation, and insulin resistance. Cells 11: 3001.
- Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. 2020. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21: 6275.
- Orecchioni M, Ghosheh Y, Pramod AB, Ley K. 2019. Macrophage polarization: different gene signatures in M1 (LPS+) vs. classically and M2 (LPS-) vs. alternatively activated macrophages. Front. Immunol. 10: 1084.
- Fujihara M, Muroi M, Tanamoto K-i, Suzuki T, Azuma H, Ikeda H. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther. 100: 171-194. https://doi.org/10.1016/j.pharmthera.2003.08.003
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11: 1650-1667. https://doi.org/10.1038/nprot.2016.095
- Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12: 357-360. https://doi.org/10.1038/nmeth.3317
- Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33: 290-295. https://doi.org/10.1038/nbt.3122
- Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140. https://doi.org/10.1093/bioinformatics/btp616
- Rom O, Reznick AZ. 2016. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic. Biol. Med. 98: 218-230. https://doi.org/10.1016/j.freeradbiomed.2015.12.031
- Kitajima Y, Yoshioka K, Suzuki N. 2020. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J. Physiol. Sci. 70: 40.
- Li W, Moylan JS, Chambers MA, Smith J, Reid MB. 2009. Interleukin-1 stimulates catabolism in C2C12 myotubes. Am. J. Physiol. Cell Physiol. 297: C706-C714. https://doi.org/10.1152/ajpcell.00626.2008
- Erekat NS, Al-Jarrah MD. 2018. Interleukin-1 beta and tumor necrosis factor alpha upregulation and nuclear factor kappa B activation in skeletal muscle from a mouse model of chronic/progressive Parkinson disease. Med. Sci. Monit. 24: 7524-7531. https://doi.org/10.12659/MSM.909032
- Zhang H, Mulya A, Nieuwoudt S, Vandanmagsar B, McDowell R, Heintz EC, et al. 2023. GDF15 mediates the effect of skeletal muscle contraction on glucose-stimulated insulin secretion. Diabetes 72: 1070-1082.
- Haddad F, Zaldivar F, Cooper DM, Adams GR. 2005. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 98: 911-917. https://doi.org/10.1152/japplphysiol.01026.2004
- Roder PV, Wu B, Liu Y, Han W. 2016. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48: e219-e219. https://doi.org/10.1038/emm.2016.6
- Grove RI, Allegretto NJ, Kiener PA, Warr GA. 1990. Lipopolysaccharide (LPS) alters phosphatidylcholine metabolism in elicited peritoneal macrophages. J. Leukoc. Biol. 48: 38-42. https://doi.org/10.1002/jlb.48.1.38
- Funk JL, Feingold KR, Moser AH, Grunfeld C. 1993. Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis 98: 67-82. https://doi.org/10.1016/0021-9150(93)90224-I
- DU T, Huang H, Chen X, Ding H, Zhang R, Liu M, et al. 2014. LPS regulates macrophage autophagy through PI3 K/Akt/mTOR pathway. Chin. J. Pathophysiol. 675-680.
- Kumar L, Bisen M, Khan A, Kumar P, Patel SKS. 2022. Role of matrix metalloproteinases in musculoskeletal diseases. Biomedicines 10: 2477.
- Li H, Mittal A, Makonchuk DY, Bhatnagar S, Kumar A. 2009. Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum. Mol. Genet. 18: 2584-2598. https://doi.org/10.1093/hmg/ddp191
- Belizario JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E. 2016. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus 5: 1-15. https://doi.org/10.1186/s40064-015-1659-2
- Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Lorenzo M. 2008. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 57: 3211-3221. https://doi.org/10.2337/db07-1062
- Shou J, Chen P-J, Xiao W-H. 2020. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 12: 14.
- Zhang W, Sun W, Gu X, Miao C, Feng L, Shen Q, et al. 2022. GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway. Cell Death Discov. 8: 162.
- Eddy AC, Trask AJ. 2021. Growth differentiation factor-15 and its role in diabetes and cardiovascular disease. Cytokine Growth Factor Rev. 57: 11-18. https://doi.org/10.1016/j.cytogfr.2020.11.002
- Han J, Ham JR, Lee MJ, Lee HJ, Son YJ, Lee MK. 2023. "Nulichal" barley extract suppresses nitric oxide and pro-inflammatory cytokine production by lipopolysaccharides in RAW264.7 macrophage cell line. Prev. Nutr. Food Sci. 28: 370-376.
- Lim HJ, Han JM, Byun EH. 2022. Evaluation of the immunological activity of Gryllus bimaculatus water extract. Prev. Nutr. Food Sci. 27: 99-107. https://doi.org/10.3746/pnf.2022.27.1.99